首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An easy and eco-friendly approach using Thymbra spicata var. spicata L. (TS) plant extract was developed for the formation of nanostructured ZnO. TS aqueous leaf extract was used for the green synthesis of nanostructured ZnO via the Successive ionic layer adsorption and reaction (SILAR) method. Electron microscope images exhibit the morphological adjustments of the samples with respect to change in TS concentration in the growth solution. The nanostructured ZnO grown by SILAR was observed to be polycrystalline with hexagonal crystal structure. The optical energy bandgap value of the samples varies from 3.21 to 3.09 eV as the content of TS increases from 2.5 to 5.0%. Also, the effect of TS additive to ZnO on electrical properties was investigated. It was determined by Van der Pauw measurements that TS contribution to ZnO significantly increased electrical resistance. In addition, impedance analyzes of the produced films were carried out in the frequency range of 20Hz ?1 MHz. Nyquist plots showed the single semicircle for all samples, and the values of capacitance and resistance were calculated. Its antibacterial activities was investigated against economically important Gram-positive (Clavibacter michiganensis subsp. Michiganensis) and negative (Pseudomonas syringae pv. Phaseolicola, Pseudomonas cichorii and Pectobacterium carotovorum subsp. Carotovorum) seed-borne plant bacterial disease agents by using paper disc diffusion assay for the first time. In vitro laboratory screenings of green synthesized nanostructured ZnO have given encouraging results, indicating their potential use in the management of seed-borne bacterial diseases.  相似文献   

2.
The present work describes structural, morphological, and antibacterial properties of thin film coatings based on tungsten oxide material on stainless-steel substrates. Thin films were prepared by RF magnetron sputtering of W targets in the oxygen/argon plasma environment in 60 W sputtering power. The characterization of the specimens was made on the basis of microstructure and antibacterial properties of the thin films surface. The effect of O2/Ar ratio on the structure, morphology, and antibacterial properties of the tungsten oxide thin films was studied. Methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) were used to assess the properties of deposited thin films. XRD peak analysis indicates (100) and (200) of WO3 phase with hexagonal structure. Moreover, the micro-strain, grain size, and dislocation density were obtained. It is noteworthy that by increasing the oxygen percentage from 10% to 20%, the grain size decreases from 81 to 23 nm while the film micro-strain and dislocation density increases. The SEM results illustrates that tungsten oxide thin films are made of interconnected nano-points in a chain shape with sphere-shaped grains with diameter variation from 10 to 100 nm. The FTIR spectra displays four distinct bands corresponds to O–W–O bending modes of vibrations and W–O–W stretching modes of the WO3 films. The antibacterial effects of tungsten oxide thin films on steel stainless substrate against Escherichia coli bacteria are also examined for the first time and our observation shows that the number of bacteria on all tungsten oxide samples decreases after 24 h. The samples exhibit an excellent antibacterial performance. This paper renders a strategy through which the tungsten oxide thin films for antibacterial purpose and proposes that WO3 thin films are ideal for various medical applications including stainless steel medical tools, optical coatings, and antibacterial coatings.  相似文献   

3.
RF-magnetron sputtering has been carried out at room temperature to deposit vanadium-doped zinc oxide (VZO) nanostructured thin films onto flexible PEN substrates. The sputtering targets of compacted VZO nanopowder have been prepared using a rapid and inexpensive Sol-Gel synthesis followed by a supercritical drying process. Structural and morphological study of VZO particles in the targets has been carried out via X-ray diffraction and Transmission Electron Microscopy (TEM). The nanostructured thin films have been characterized to analyze the structural, morphological, electrical and optical properties as a function of vanadium content from 0 to 4 at.%. Structural characterization of VZO thin films revealed that the deposited thin films have been grown preferentially along (002) and exhibit the hexagonal wurtzite structure. The cross-sectional and microstructural analysis performed by Scanning Electron Microscopy (SEM) confirms the columnar growth of nanostructures. The deposited thin films exhibit transparent behavior with transmission >70% in the visible region. It has been observed that nanostructured thin films with vanadium content of 2% have demonstrated the lowest resistivity (6.71 × 10?4 Ω cm) with Hall mobility of 10.62 cm2 V?1 s?1. The deposited vanadium doped nanostructured thin films would have potential applications in electronic and optoelectronic devices.  相似文献   

4.
《Ceramics International》2022,48(21):31559-31569
Colloidal Zinc oxide quantum dots (ZnO QDs) prepared with varying concentrations through precipitation method were deposited on flexible ITO/PET substrates using spin-coating technique. Various characterization tools were utilized to investigate the morphological, structural, electrical and optical properties of the films. The crystallinity of the films was found to improve with increasing ZnO QD concentration (ZQC) as evident from the X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) studies. Crystallographic and optical parameters were evaluated and explained in depth. The average nanograin size and bandgap were increased and decreased respectively, from ~5 nm to ~8 nm and 3.29 eV–3.24 eV with an increase in ZQC from 10 mg/mL to 70 mg/mL. Columnar structure growth of the films is revealed by AFM results. The films showed decent optical transparency up to 81%. All the ZnO films exhibited n-type semiconducting property as indicated by the electrical measurements with carrier mobility and low resistivity of 12.21–26.63 cm2/Vs and 11.84 × 10?3 to 13.16 × 10?3 Ω cm respectively. Based on the experimental findings, ZnO QD nanostructure film grown at 50 mg/mL is envisaged to be a potential candidate for flexible perovskite photovoltaic application.  相似文献   

5.
Ga-doped ZnO (GZO) thin films grown on sapphire substrates have been widely investigated as a promising transparent thermoelectric (TE) material. However, due to the large lattice mismatch and thermal expansion between the sapphire substrate and GZO film, strain-induced lattice distortion impedes the transport of electrons, leading to low carrier mobility. In this study, ZnO homo-buffer layers with different thicknesses were inserted between sapphire substrates and GZO films, and their effect on the TE properties was investigated. A thin ZnO interlayer (10 nm) effectively reduced the lattice mismatch of the GZO film and improved the carrier mobility, which contributed to the large enhancement in the electrical conductivity. Simultaneously, energy filtering occurred at the interface between GZO and ZnO, resulting in a relatively high density of states (DOS) effective mass and maintaining a high Seebeck coefficient compared to that of the unbuffered GZO films. Consequently, the GZO film with a 10 nm thick ZnO buffer layer possessed a high power factor value of 449 μW m−1 K−2 at 623 K. This study provides a facile and effective method for optimizing the TE performance of oxide thin films by synergistically improving their carrier mobility and enhancing their effective mass.  相似文献   

6.
Undoped and nickel (Ni)-doped ZnO thin films were spray deposited on glass substrates at 523 K using 0.1 M of zinc acetate dihydrate and 0.002–0.01 M of nickel acetate tetrahydrate precursor solutions and subsequently annealed at 723 K. The effect of Ni doping in the structural, morphological, optical and electrical properties of nanostructured ZnO thin film was investigated using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), UV–vis Spectrophotometer and an Electrometer respectively. XRD patterns confirmed the polycrystalline nature of ZnO thin film with hexagonal wurtzite crystal structure and highly oriented along (002) plane. The crystallite size was found to be increased in the range of 15–31 nm as dopant concentration increased. The SEM image revealed the uniformly distributed compact spherical grains and denser in the case of doped ZnO thin films. All the films were highly transparent with average transmittance of 76%. The measured optical band gap was found to be varied from 3.21 to 3.09 eV. The influence of Ni doping in the room temperature ethanol sensing characteristics has also been reported.  相似文献   

7.
A nanostructured layer of tungsten oxide, WO3, was prepared by a spray pyrolysis deposition (SPD) method using (NH4)2WO4 precursor. The films were investigated in order to determine the electrical behaviour (impedance, Mott–Schottky and IV) and the morphological characteristics (SEM). The XRD analysis reveals that tungsten oxide is present in monoclinic phase but the orthorhombic phase is also expected to be present in the structure of WO3 crystals. Changes in conductivity of the WO3 films have been observed after immersion in water.  相似文献   

8.
Polyurethane-based coatings reinforced by ZnO nanoparticles (about 27 nm) were prepared via solution blending. The ZnO/PU films and coats were fabricated by a simple method of solution casting and evaporation. The mechanical properties of the films were investigated by a universal material test, and the abrasion resistance of the prepared coats was evaluated by a pencil-abrasion-resistance tester. It was found that significant improvement of the PU films in Young’s modulus and tensile strength was achieved by incorporating ZnO nanoparticles up to 2.0 wt%, and that the abrasion resistance of the PU coats was greatly enhanced due to the addition of ZnO nanoparticles. Moreover, the antibacterial property test was carried out via the agar dilution method and the result indicated that PU films doped with ZnO nanoparticles showed excellent antibacterial activity, especially for Escherichia coli.  相似文献   

9.
《Ceramics International》2016,42(6):6701-6706
Undoped and Al-doped ZnO (AZO) thin films (Al: 3, 5 at%) using a series of high quality ceramic targets have been deposited at 450 ºC onto glass substrates using PLD method. The used source was a KrF excimer laser (248 nm, 25 ns, 2 J/cm2). The study of the obtained thin films has been accomplished using X-ray diffraction (XRD), M-lines spectroscopy and Rutherford backscattering spectroscopy (RBS). XRD patterns have shown that the films crystallize in a hexagonal wurtzite type structure with a highly c-axis preferred (002) orientation, and the grain sizes decrease from 37 to 25 nm with increasing Al doping. The optical waveguiding properties of the films were characterized by means of the prism-coupling method. The distinct M-lines of the guided transverse magnetic (TM) and transverse electric (TE) modes of the ZnO films waveguide have been observed. The M-lines device has allowed determination of the accurate values of refractive index and thickness of the studied ZnO and AZO thin films. An evaluation of experimental uncertainty and calculation of the precision of the refractive index and thickness were developed on ZnO films. The RBS results agree with XRD and m-lines spectroscopy measurements.  相似文献   

10.
《Ceramics International》2021,47(19):27251-27266
In this study, pure zinc oxide and lightly cadmium doped zinc oxide (Zn1-xCdxO; x = 0.01, 0.03, 0.05 and 0.07) films were synthesized by chemical bath deposition to mainly investigate the possible impact of isovalent (in particular Cd) doping ratio and temperature on their electric and dielectric features. X-ray diffraction patterns revealed that all produced films have a dominance of ZnO hexagonal wurtzite structure with the emergence of a minor CdO cubic phase at x ≥ 0.03, and predicted the decrease in average crystallite sizes with Cd doping. Cd content in the films was verified by energy dispersive X-ray analysis. Images of scanning electron microscopy revealed the formation of nanorods and spheres on the surface of pure ZnO film which changed to porous/agglomerative spheres with Cd doping. Then a comprehensive electric and dielectric analysis was carried out as a function of frequency in a wide temperature range (300–700 K) using two separate experimental data sets, (Z, θ) and (C, G). The results demonstrated the critical effect of temperature and Cd doping ratio on the electrical and dielectric properties of ZnO films. Among the investigated films, Zn0·97Cd0·03O film recorded highest conductivity and enhanced dielectric properties which was attributed to the equal activation of grains and grain boundaries in the film structure verified by the estimation of activation energies from impedance spectrum. However, the effect of Cd doping on electric and dielectric properties was prominent only below 500 K, beyond which the doping effect became negligible which might be correlated with the effective dominance of grain boundaries at high temperatures as was witnessed by modulus spectrum.  相似文献   

11.
《Ceramics International》2017,43(17):14842-14850
In this research, zinc oxide (ZnO) and zinc oxide/baghdadite (ZnO/Ca3ZrSi2O9) were prepared on the surface of Mg alloy using physical vapor deposition (PVD) coupled with electrophoretic deposition (EPD). For this purpose, the nanostructured ZnO was prepared with a thickness of 900 nm and crystallite sizes of 64 nm as under layer while nanostructured baghdadite with a thickness of 10 µm was deposited on the Mg alloy substrate as an over-layer. Electrochemical measurement exhibited that the ZnO/Ca3ZrSi2O9-coated specimen has a higher corrosion resistance and superior stability in simulated body fluid (SBF) solution in comparison with the ZnO-coated and bare Mg alloy samples. Antibacterial activities of the uncoated and coated specimens were evaluated against various pathogenic species (Escherichia coli, Klebsiella pneumoniae, and Shigella dysenteriae) via disc diffusion method. The obtained results showed that ZnO and ZnO/Ca3ZrSi2O9 coatings have great zones of inhibition (ZOI) against E. coli, Klebsiella, and Shigella. However, less ZOI was found around the bare Mg alloy. Therefore, ZnO/Ca3ZrSi2O9 is a promising coating for orthopedic applications of biodegradable Mg alloys considering its excellent antibacterial activities and high corrosion resistance.  相似文献   

12.
In the present work, thermal evaporation and sol–gel coating techniques were applied to fabricate nanostructured thin ZnO films. The phase structure and surface morphology of the obtained films were investigated by X-ray diffractometer (XRD) and scanning electron microscope (SEM), respectively. The topography and 2D profile of the thin ZnO films prepared by both techniques were studied by optical profiler. The results revealed that the thermally evaporated thin film has a comparatively smoother surface of hexagonal wurtzite structure with grain size 12 nm and 51 m2/g. On the other hand, sol–gel films exhibited rough surface with a strong preferred orientation of 25 nm grain size and 27 m2/g surface area. Following deposition process, the obtained films were applied for the photodegradation of 2,4,6-trichlorophenol (TCP) in water in presence of UV irradiation. The concentrations of TCP and its intermediates produced in the solution during the photodegradation were determined by high performance liquid chromatography (HPLC) at defined irradiation times. Complete decay of TCP and its intermediates was observed after 60 min when the thermal evaporated photocatalyst was applied. However, by operating sol–gel catalyst, the concentration of intermediates initially increased and then remained constant with irradiation time. Although the degradation of TCP followed first-order kinetic for both catalysts, higher photocatalytic activity was exhibited by the thermally evaporated ZnO thin film in comparison with sol–gel one.  相似文献   

13.
A novel symmetrical Schiff base ligand was prepared by condensation reaction of 2,2-dimethyl-1.3-diaminopropane and (E)3-(2nitrophenyl)acrylaldehyde. The ligand and its Zn(II) coordination compounds were well characterized by the elemental analysis, FTIR, 1H, 13C NMR, UV–vis spectra and molar conductance. Thermal behaviors of all compounds were investigated from the room temperature to 600 °C with a heating rate of 10 °C/min. Furthermore some decomposition thermo-kinetic parameters were evaluated by Coats–Redfern equation at each decomposition step. Electrochemical properties of ligand and its complexes were studied by cyclic voltammetry technique. Also antibacterial/antifungal activities of the ligand and its complexes were tested against three Gram-negative bacteria Escherichia coli (ATCC 25922), Salmonella spp. and Pseudomonas aeruginosa (ATCC 9027) and two Gram-positive bacteria Staphylococcus aureus (ATCC 6538) and Corynebacterium renale and also three fungi (Aspergillus niger, Penicillium chrysogenum and Candida albicans). The results exhibited suitable antibacterial/antifungal properties for ligand and Zn(II) complexes. The study has shown that the complexation of ligand to zinc center lead to enhancement of antibacterial/antifungal activity.  相似文献   

14.
ZnO varistors are widely used to protect electronic circuits form transient voltages. However, it is difficult to prepare varistors with voltage less than 10 V using ZnO ceramics. Here we prepared a ZnO-MnO2-ZnO (ZMZ) sandwich thin film via magnetron sputtering and subsequent annealing at 200-500 °C. With the increase of annealing temperature, the manganese oxide sandwich layer reacts with the upper and lower ZnO layer and becomes thinner. After annealed at 500 °C, because of ZnO grain growth, the upper and lower ZnO layers joined together. The electrical properties of ZMZ films annealed at 400 °C show strong nonlinear I-V characteristics. A ZMZ low voltage thin film varistor with planar boundary potential barrier was obtained whose nonlinear coefficient α and varistor voltage V1 mA are about 30 and 6.0 V, respectively. The stable and excellent nonlinear characteristics make it a promising candidate for overvoltage protection in low operating voltage circuits.  相似文献   

15.
ZnO quantum dots (QDs) with average particle size of 4.4 nm were prepared using a low temperature processing solvothermal route. ZnO QD based thin films were then prepared from the ZnO QD based solution using spin coating technique and annealed at 250, 350 and 450 °C. The average grain size and energy band gap of ZnO were respectively increased and decreased from 5.5 to 22.9 nm and 3.37 to 3.27 eV upon increasing the annealing temperature up to 450 °C. The photoluminescence analysis showed that the as-coated ZnO film and ZnO film annealed at 250 °C have high density of oxygen vacancies; these defects were reduced upon increasing the temperature to 350 and 450 °C. The photoelectric properties of the films were strongly affected by the grain size and the defects present in the films. The photo-to-dark current ratio (PDCR) was decreased from 3723 to 371%, whereas the responsivity was increased from 1.25 to 218 mA/W with the increase of temperature to 450 °C. As-coated and 250 °C-annealed films exhibited better photoresponse than others in terms of PDCR, rise time and fall time due to their larger surface-to-volume ratio, making them promising candidate as electron transport layer in perovskite solar cells.  相似文献   

16.
《Ceramics International》2016,42(13):14456-14462
Room temperature Al-doped ZnO (AZO) thin films with improved crystalline and optical properties were grown on normal glass substrates using unbalanced RF magnetron sputtering technique. To modify the plasma density towards the substrate and enhance the crystalline nature, an additional magnetic field ranging from 0 to 6.0 mT has been applied to the AZO target by proper tuning of solenoid coil current from 0 to 0.2 A respectively, which plays a significant role for controlling the physical properties of AZO films. The results from XRD studies indicate that all AZO films were composed of hexagonal wurtzite structure with better crystal quality through the applied magnetic field, ZnO (002) plane as a preferred growth. Furthermore, XPS studies suggested that symmetric chemical shifts in the binding energies for the Zn 2p and O1s levels with applied magnetic field. SEM analysis revealed the formation of a smooth, homogeneous and dense morphological surface with applied magnetic field. From AFM analysis, it was observed that the applied magnetic field strongly influenced the grain size and the films showed decreasing tendency in electrical resistivity. Films exhibited superior optical transmittance more than 94% in the visible region essentially due to the formation of better crystalline nature. The results indicate that improved band gap from 3.10 to 3.15 eV with additional magnetic field varied from 0 to 6.0 mT respectively.  相似文献   

17.
Polyurethane-based coatings reinforced by ZnO nanoparticles (about 27 nm) were prepared via solution blending. The ZnO/PU films and coats were fabricated by a simple method of solution casting and evaporation. The mechanical properties of the films were investigated by a universal material test, and the abrasion resistance of the prepared coats was evaluated by a pencil-abrasion-resistance tester. It was found that significant improvement of the PU films in Young’s modulus and tensile strength was achieved by incorporating ZnO nanoparticles up to 2.0 wt%, and that the abrasion resistance of the PU coats was greatly enhanced due to the addition of ZnO nanoparticles. Moreover, the antibacterial property test was carried out via the agar dilution method and the result indicated that PU films doped with ZnO nanoparticles showed excellent antibacterial activity, especially for Escherichia coli.  相似文献   

18.
Nanostructured silver films of different thicknesses were deposited on surfaces of polypropylene nonwovens by magnetron sputter coating to obtain antibacterial and electrical conductive properties. The surface morphology of nanostructured silver films was investigated by atomic force microscopy (AFM). The antibacterial properties of the nonwovens coated with relatively thinner films were evaluated using the shake flask test. The conductivity of the nonwovens coated with relatively thicker films was examined using an ohm-meter. The results of the antibacterial test revealed that the antibacterial performance improved gradually as the film thickness increased from 0.5 to 3 nm. It is believed that the total amount of silver ions released from the coating was increased along with the increase in film thickness. As sputtering time prolonged, the grain sizes of the silver particles were increased and the coating became more compact. The results of the electrical conductivity test showed that the increased film thickness led to the improved electrical conductivity when the film was relatively thicker. The AFM images clearly revealed the change in surface morphology formed by sputter coating. The growth and coverage of the coating layer contributed to the improvement in its antibacterial and conductive properties.  相似文献   

19.
《Ceramics International》2020,46(15):24120-24128
Zinc oxide (ZnO) is one of the most prospective material for optoelectronic, piezoelectric, spintronic and gas sensing applications. Doping rare-earth elements in ZnO leads to significant enhancement in its electrical properties. Herein, pure and Tb-doped ZnO nanoparticles were synthesized via chemical co-precipitation method and their structural, morphological and electrical properties were systematically studied. As a result of Tb-doping, hexagonal shaped ZnO nanorods converted to taper-like nanoparticles. Tb–ZnO nanoparticles exhibited high Curie temperature (Tc ~ 225 °C) and enhanced dielectric properties as compared to pure ZnO nanoparticles. Electrical conduction studies revealed a significant reduction in the leakage current as a result of Tb-doping. Piezoelectric nanogenerators based on synthesized nanoparticles were fabricated and piezoelectric output voltage of the Tb-doped ZnO based nanogenerator was measured to be remarkably enhanced (by up to ~ 4 times) compared to pure ZnO based nanogenerator. These results indicate Tb–ZnO:PDMS composite films on flexible substrates could be promising candidate for energy harvesting application.  相似文献   

20.
In this research, ZnO nanoparticles (ZnO NPs) and Carbon Quantum Dots-decorated ZnO nanoparticles (ZnO/CQDs NCs) were prepared via different procedures and precursors. Soya chunk was applied as a source of carbon for the preparation of CQDs. Crystalline structure, purity, size, and morphological properties of products were investigated via X-ray diffraction (XRD) analysis, energy dispersive spectroscopy (EDS), Transmission Electron Microscopy (TEM), FT-IR, and Scanning Electron Microscopy (SEM) respectively. Findings showed that homogeneity, size, and morphological properties of products can be intensively affected via different precursors and procedures. From the homogeneity, size, and morphological point of view, the hydrothermal route, ammonia, 5 h, and 180 °C were the optimum procedure, pH adjuster, temperature, and time respectively. Optimum product was applied for carrying out minimum inhibitory concentration (MIC) and Agar disk-diffusion tests against various microorganisms. Results demonstrated that prepared ZnO NPs have maximum antibacterial activity against Staphylococcus aureus (19.53 μg/ml) and ZnO/CQDs NCs have no inhibitory effect against tested microorganisms. For ZnO NPs, the disk diffusion test proved that the highest growth inhibition zone was related to Staphylococcus aureus (15 mm). The presence of CQDs in ZnO/CQDs NCs reduces the inhibitory effect of ZnO NPs intensively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号