首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(16):18154-18165
Nanoparticles of Co1−xNixFe2O4 with x=0.0, 0.10, 0.20, 0.30, 0.40 and 0.50 were synthesized by co-precipitation method. The structural analysis reveals the formation of single phase cubic spinel structure with a narrow size distribution between 13–17 nm. Transmission electron microscope images are in agreement with size of nanoparticles calculated from XRD. The field emission scanning electron microscope images confirmed the presence of nano-sized grains with porous morphology. The X-ray photoelectron spectroscopy analysis confirmed the presence of Fe2+ ions with Fe3+. Room temperature magnetic measurements showed the strong influence of Ni2+ doping on saturation magnetization and coercivity. The saturation magnetization decreases from 91 emu/gm to 44 emu/gm for x=0.0–0.50 samples. Lower magnetic moment of Ni2+ (2 µB) ions in comparison to that of Co2+ (3 µB) ions is responsible for this reduction. Similarly, overall coercivity decreased from 1010 Oe to 832 Oe for x=0.0–0.50 samples and depends on crystallite size. Cation distribution has been proposed from XRD analysis and magnetization data. Electron spin resonance spectra suggested the dominancy of superexchange interactions in Co1−xNixFe2O4 samples. The optical analysis indicates that Co1−xNixFe2O4 is an indirect band gap material and band gap increases with increasing Ni2+ concentration. Dispersion behavior with increasing frequency is observed for both dielectric constant and loss tangent. The conduction process predominantly takes place through grain boundary volume. Grain boundary resistance increases with Ni2+ ion concentration.  相似文献   

2.
《Ceramics International》2019,45(11):14073-14083
Nanoscale NixMg1-xAl2O4 spinel pigments were synthesized by a citric acid precursor combined with the gel-casting method. The microstructure, cation distribution and optical properties as a function of calcining temperature and nickel content were investigated by the X-ray diffraction (XRD) Rietveld refinement, transmission/field emission scanning electron microscopy (TEM/FESEM), X-ray photoelectron spectroscopy (XPS), colour measurement and UV–vis–NIR spectrophotometry. Upon increasing the calcining temperature, both Ni2+ and Mg2+ hindered the migration of Al3+ to octahedral sites. When the Ni content increased, the cation site percentage of Ni2+ in the tetrahedral and octahedral sites varied slightly while that of Al3+ and Mg2+ change substantially. The cation exchange resulted in an increase in the inversion parameters and a decrease in the lattice parameters with increasing temperature or Ni content. Furthermore, Rietveld refinement also showed a shrinkage of the tetrahedra and an expansion of the distorted octahedra in the spinel structure. Short-range information based on optical spectra suggests that variation in the splitting energy of tetrahedra and octahedra caused the change in the spectral absorption. This study may deepen the understanding of the structural-optical property relationship of NixMg1-xAl2O4 spinel, which is vital to the further colour modification of ceramics and glazes.  相似文献   

3.
In this paper, we have tailored the structural, magnetic and dielectric properties of Ni0.5Zn0.3Cd0.2Fe2-yLayO4 (y?=?0.0–0.21) nano-structured spinel ferrites by the substitution of La3+ ions. The investigated samples were synthesized by Sol-gel auto-combustion method and were characterized using XRD, SEM, VSM, FTIR and dielectric measurements. Single phase nanostructure formation of synthesized material was confirmed by XRD analysis. The effect of La3+ ions on crystallite size, grain size, lattice constant and bulk densities was calculated and it was found that lattice constant first increased upto concentration y?=?0.105 then decreased with further substitution of dopant ions. FTIR results for all synthesized samples demonstrated two absorption bands at υ1 =?540.8?cm?1 and υ2 =?490.8?cm?1 corresponds to tetrahedral and octahedral sites of spinel structure respectively. With the increase in La3+ ions concentration, saturation magnetization and remanence both found to be decreased down to lowest Ms value of 34.1?emu/g which is not yet reported in the literature according to best of our knowledge. Dielectric results showed that by decreasing frequency, both dielectric loss and dielectric constant decreases. AC conductivity has two regions, at low frequency region ac conductivity increases while at high frequency region, it decreases with increasing frequency. The measured results for all synthesized nano-ferrites suggested that synthesized nanoferrites are recommended for high frequency and microwave absorbing applications.  相似文献   

4.
《Ceramics International》2020,46(10):16119-16125
Ba1-xCaxMoO4 (0 ≤ x ≤ 0.20) ceramics were prepared from powders to form solid solutions by a solid-state reaction sintering process. The influence of the Ca2+ content on the microstructure, sintering, densification, microwave dielectric properties and chemical stability of BaMoO4-based ceramics with Ag metal was discussed in detail. The sintering temperatures of the Ba1-xCaxMoO4 ceramics were effectively reduced to less than 950 °C by the formation of the solid solutions. Structural analysis indicates that the Ba1-xCaxMoO4 ceramics belong to the class of tetragonal scheelites. The crystal grain size begins to decrease and become more regular as x increases from 0 to 0.12. However, as x continues to increase, a liquid phase begins to appear, and the grain boundaries are no longer clear. The εr value increases from approximately 8.6 to 9.8 as x increases from 0 to 0.2. The Ba0.92Ca0.08MoO4 sample possesses the best microwave dielectric performance, namely an εr = 9.3 and the maximum Q × f value of 33593 GHz. The addition of 15 wt% TiO2 or 10 wt% CaTiO3 can effectively change the τf values of the Ba1-xCaxMoO4 ceramics to approximately 0. The Ba1-xCaxMoO4 ceramic samples can coexist with silver during the LTCC cofiring process.  相似文献   

5.
《Ceramics International》2021,47(22):31886-31893
In this contribution, SnFe2O4 nanoparticles were prepared by the solvothermal method, the structural properties were performed using X-Ray Diffraction (DRX) to prove the success of tin ferrite formation and to determine de crystals parameters. The size and morphological study were build using Scanning Electron Microscopy (SEM) and Transmission Electron microscopy (TEM), the results showed that the size of particles is uniform with a range of particles (5–7 nm). The magnetic properties were carried out using the SQUID device, the SnFe2O4 nanoparticles have a magnetic transition at 750 K. In addition, the hysteresis loops at low temperature displayed Ms and Mr equals to 23 emu/g and 6 emu/g, respectively. The magnetoresistance properties were investigated, the SnFe2O4 nanoparticles present a large magnetoresistance effect (80%). The experimental results are supplemented by model calculations utilizing density functional theory and Monte-Carlo simulations.  相似文献   

6.
For the first time, a Zn1.1Ga1.8Ge0.1O4 transparent spinel ceramic has been fully densified by spark plasma sintering. XRD measurements show that this ceramic is composed of a pure cubic spinel phase. SEM analysis revealed a homogeneous and dense microstructure with the average grain size being 200 ± 100 nm. The transmittance of these fine-grained ceramics reached 70 % in the visible range and is very close to 80 % at 2 µm, thus close to the Tmax value deduced from the measurement of the refractive index. The ceramics exhibit excellent mechanical properties with a Young modulus of 222 GPa, a Vickers hardness of 14.25 GPa and a thermal conductivity of 7.3 W.m−1. K−1. By doping with Cr3+ ions, transparent Zn1.1Ga1.8Ge0.1O4 ceramics present both a red luminescence and a long-lasting afterglow during several minutes. Moreover, a near infrared broadband emission at 1.3 µm is also achieved with Ni2+ ions.  相似文献   

7.
The spinel ZnFe2O4 specimens were obtained via a hydrothermal and a ceramic method, respectively, and their structural and magnetic properties were comparatively studied. It was found that all the specimens exhibited a single-phase and mixed spinel structure. The magnetism of specimens synthesized via the hydrothermal method is obviously better than that of specimen prepared via the ceramic method. This can be ascribed to the different occupancy of Fe ions resulted from the loss of Zn during the hydrothermal process.  相似文献   

8.
《Ceramics International》2022,48(22):33524-33537
In this work, nanosubmicron blue-green pigment powder based on the composition of MgxCo1-xCr2-yAlyO4(0 = x ≤ 1, 0 = y ≤ 2)was prepared by a gel casting method. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Rietveld refinement with GSAS (General Structure Analysis System), and UV–Vis absorption spectroscopy were used to study the phase composition, grain size, morphology, cation distribution in the crystal structure and spectral absorption of the samples. Colour parameters were also studied by using a colour measurement spectrophotometer. The studies demonstrate that the distribution of cations in the crystal structure is disordered and that divalent and trivalent cations are mixed to occupy tetrahedral and octahedral sites. Furthermore, the substitution of ions at the A/B site leads to a change in the cation distribution ratio at the tetrahedral and octahedral sites. With increasing Mg2+ doping concentration, the inversion parameter of the spinel increases, while with increasing Al3+ doping concentration, the inversion parameter of the spinel decreases. In addition, changes in the calcining atmosphere lead to a change in the oxygen vacancy content in the structure. Under the condition of a reductive atmosphere, the oxygen vacancy content significantly increases, and the inversion parameter also increases. The colour difference for the synthesized MgxCo1-xCr2-yAlyO4 spinel powder is related to the proportion of chromophore ions occupying tetrahedral and octahedral sites and the number of oxygen vacancies.  相似文献   

9.
Mg2(Ti1-xSnx)O4 (x?=?0–1) ceramics were prepared through conventional solid-state method. This paper focused on the dependence of microwave dielectric properties on crystal structural characteristics via crystal structure refinement, Raman spectra study and complex chemical bond theory. XRD spectrums delineated the phase information of a spinel structure, and structural characteristic of these compositions were achieved with the help of Rietveld refinements. Raman spectrums were used to depict the correlations between vibrational phonon modes and dielectric properties. The variation of permittivity is ascribed to the Mg2(Ti1-xSnx)O4 average bond covalency. The relationship among the B-site octahedral bond energy, tetrahedral bond energy and temperature coefficient are discussed by defining on the change rate of bond energy and the contribution rate of octahedral bond energy. The quality factor is affected by systematic total lattice energy, and the research of XPS patterns illustrated that oxygen vacancies can be effectively restrained in rich oxygen sintering process. Obviously, the microwave dielectric properties of Mg2(Ti1-xSnx)O4 compounds were obtained (εr= 12.18, Q×f?=?170,130?GHz, τf?=??53.1?ppm/°C, x?=?0.2).  相似文献   

10.
In order to accurately investigate the effect of cobalt substitutions in tin ferrite (SnFe2O4) properties, we prepared CoxSn1-xFe2O4 nanoparticles for different Co concentrations, x?=?0.0, 0.25, 0.50, 0.75, and 1.00 using a simple co-precipitation method. X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and diffuse reflectance spectra (DRS) are used to study of structural, magnetic, morphology, and optical properties. The XRD and FTIR results confirmed the formation of cubic spinel structure. The lattice parameter and unit cell volume of tin ferrite nanoparticles were found to increase by entering and increasing Co+2 content in 0.25, and then significantly decrease for higher contents. In accordance with the XRD results, a slight shift in main band υ1 (Fetetra+3?O) to lower wavenumber and then to higher wavenumber were observed in the IR spectra of Co content x?<?0.25 and x?>?0.25, respectively. In turn to, saturation magnetization, remanent magnetization and anisotropy constant of SnFe2O4 nanoparticles were gradually increased for x?=?0.50 and then decreased for x?>?0.50.  相似文献   

11.
This work presents an alternative sol-gel method to synthesize liebenbergite (Ni2SiO4), a difficult silicate to prepare by the conventional ceramic route. The method consisted in reacting (H2Si2O5)aq with (Ni(C2H3O2)2.4H2O) under the effect of hydrothermal method. Heating of the obtained gel at 1400 °C/3 h resulted in highly pure liebenbergite, which exhibited an intense yellowish green color. Technical behavior of the latter was studied and compared with those of Ni-doped forsterite green pigments in different applications. The results indicated that their behaviors depended on olivine composition, application medium and pigment concentration. Concerning coloring performances, that of liebenbergite was found the most optimal in essentially all cases, followed by olivine with intermediate Ni content, then by olivines with low doping levels. The olivine pigments (powdered and enameled) were characterized by XRD, SEM/EDS techniques; FTIR, Raman, UV–vis-NIR spectroscopies; and CIE-L*a*b* color measurements.  相似文献   

12.
This work presents a successful, environmentally-friendly route for tuning the magnetic and mechanical properties of CoFe2O4 sintered ceramics. The precursor powders were prepared from mixtures containing 100, 50 and 20% water, with the remaining volume composed of isopropanol. The synthesised powders were pressed into pellets and sintered at 1150 and 1200 °C. SEM micrographs indicate that the solvent exerts a major influence over the morphology of the ferrite grains. Vickers hardness shows a maximum for products from a medium containing 50% water, which could be directly related to the smaller average size of the CoFe2O4 grains. The coercivity of the pellets is strongly influenced by the reactional medium, with a maximum of 501.7 Oe (sample prepared at 20% water and fired at 1150 °C). This work opens up possibilities for fine tuning of the final properties of CoFe2O4 sintered ceramics, further enabling the utilisation of this material in advanced applications.  相似文献   

13.
14.
A stable process for green fuel production by means of a combined CO2 reforming of methane and partial oxidation was evaluated during this research work. The goal was achieved by using Co-W promoters with NiO spinel on Al2O3 support. Sol-gel technique based on the privileged characterization such as homogeneous distribution was used for the synthesis of enhanced Co-W catalyst on NiAl2O4 spinel. Structural and morphological attributes of fabricated samples were investigated through XRD, FESEM, EDX, BET and FTIR techniques. Eventually, homogeneous distribution of particles, less than 50?nm, high specific surface area and homogeneous structure were observed. Catalysts stability and resistance to carbonaceous deposits in operated conditions are evaluated by TG-DTG technique. In this study, reduction of deposited coke after the reaction was achieved by raising the tungsten amount in catalyst. According to obtained results, CoNiAl2O4 promoter with 1?wt%?W (CoW1/NiAl2O4) nanocatalyst has obtained higher conversion along with high H2 and CO yields. Also, CoW1/NiAl2O4 was considered as an optimum nanocatalyst for methane combined reforming by illustrating the tremendous stability at 750?°C and during the 48?h time on stream performance.  相似文献   

15.
CaCu3-xNixTi4O12 (x?=?0, 0.05, and 0.10) powders were synthesized using a solid state reaction method. Phase structure and microstructure analyses revealed that all sintered CaCu3-xNixTi4O12 ceramics were of a pure phase. The CaCu3Ti4O12 ceramics had a dense microstructure and grain sizes were enlarged by doping with Ni2+. Interestingly, the dielectric permittivity was significantly enhanced, whereas the loss tangent was greatly suppressed to ~0.046–0.034 at 1?kHz. All sintered ceramics exhibited non-Ohmic characteristics. Clarification of the influences of DC bias showed that the dielectric permittivity and loss tangent values were increased by DC bias. The resistance of grain boundaries and the associated conduction activation energy of CaCu3-xNixTi4O12 ceramics were reduced as the DC bias voltage increased. Therefore, the observed non-Ohmic behavior and significantly enhanced dielectric properties should be closely related to variation in the Schottky barriers at the grain boundaries.  相似文献   

16.
The copper complex [Cu(ATICAR)2(H2O)]·2H2O (ATICAR=5-amino-1-tolylimidazole-4-carboxylate) has been prepared and characterized by its crystal structure determination. The ligand geometry around the copper(II) center is best described as predominantly square pyramidal (2/3) with a trigonal bipyramidal component (1/3). The ATICAR ligands act as bidentates to form the distorted square pyramid base of N2O2 donor atoms and a coordinated water molecule at the apex is held with a Cu–O bond that is unusually short (2.148 Å) for square pyramidal copper(II). Compound exhibits a dose-dependent antiproliferative effect on the growth of the B16F10 melanoma cell line while its lower IC50 value establish advantage by copper complexation.  相似文献   

17.
Possibility of formation of quinary and senary equimolar high entropy oxides from the Co-Cr-Fe-Mg-Mn-Ni-O system is presented. Different proposed compositions are synthesized using the solid-state reaction route at high temperatures (900−1100 °C) and quenched to room temperature. Phase composition of the samples is studied, showing tendency toward formation of two main phases: rock salt-structured Fm-3 m and spinel-structured Fd-3 m. It is documented that the annealing temperature has a profound effect on stability of both structures, and at 1100 °C usually the highest content of Fm-3 m phase is usually observed. Three different oxides, namely, (Co,Cr,Fe,Mn,Ni)3O4, (Co,Cr,Fe,Mg,Mn)3O4 and (Cr,Fe,Mg,Mn,Ni)3O4 are obtained as single-phase materials, which structure can be described as the high entropy Fd-3 m spinel one. The latter two compounds have not been previously reported in the literature. Activated character of the electrical conductivity dependence on temperature is observed, with relatively high total conductivity at high temperatures and corresponding high absolute values of Seebeck coefficient.  相似文献   

18.
The synthesis of intercluster porous nanocomposites obtained from polyoxometallate compounds such as the [AlO4Al12(OH)24(H2O)12]7+ cation (named Al13) and the Anderson-type [Al1−x Cr x Mo6O24H6]3− anion (named Al1−x Cr x Mo6) has been performed in order to study the interaction between the two cluster ions, the stability of the XMo6 planar configuration, the products obtained after thermal treatment, the structure and the local symmetry of the Cr3+ species. Chemical, thermal, structural and spectroscopic characterizations of the original and thermally treated phases have been followed by different techniques such as TG-DTA, XRD, SEM-EDAX, and mainly by EPR. All the results have shown that the structure of the intercluster nanocomposites (Al13)(Al1−x Cr x Mo6)2 precursors is similar to that reported by Son et al. for the chromium-free (Al13)(AlMo6)2 intercluster nanocomposite [Son et al., J. Am. Chem. Soc. 122 (2000) 7432]. After thermal treatment in air at several temperatures of the (Al13)(Al1−x Cr x Mo6)2 nanocomposites the following phases have been observed and characterised: (i) at 400 °C an amorphous phase containing dispersed Cr3+ ions; (ii) at 700 °C a crystalline phase corresponding to Cr2(MoO4)3/Al2(MoO4)3 solid solutions; (iii) at 950 °C α-Al2O3/Cr2O3 solid solutions with a random dispersion of the Cr3+ ions.  相似文献   

19.
Furin and PACE4, members of the subtilisin-like proprotein convertase (SPC) family, have been implicated in the metastatic progression of certain tumors in addition to the activation of viral coat proteins and bacterial toxins, indicating that these enzymes are potential targets for therapeutic agents. Alpha1-Antitrypsin Portland is an engineered alpha1-antitrypsin designed as a furin-specific inhibitor and has been used as a tool in the functional analysis of furin. In this work, we engineered rat alpha1-antitrypsin to create a PACE4-specific inhibitor. Substituting Arg-Arg-Arg-Arg for Ala-Val-Pro-Met(352) at P4-P1 and Ala for Leu(354) at P2' created a potent PACE4- and PC6-specific inhibitor. This variant (RRRRSA) formed an SDS- and heat-stable serpin/proteinase complex with PACE4 or PC6 and inhibited both enzyme activities. The RRRRSA variant was efficiently cleaved by furin without formation of the stable complex. This is the first report of a highly selective protein-based inhibitor of PACE4 and PC6. This inhibitor will be useful in delineating the roles of PACE4 and PC6 localized in the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号