首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

2.
《Ceramics International》2022,48(3):3070-3080
Red and far-red emitting phosphors have been widely used in phosphor-converted light emitting diode (pc-LED) devices to provide lighting for indoor plant growth, thus achieving desired product qualities. Among the many ways to optimize phosphors’ optical performance, cationic substitution is one of the most effective methods. In this study, red phosphors (Li2MgTi1-x-yO4: xMn4+, yGe4+) were synthesized by high temperature solid state method and the optical performance of phosphors were improved with increasing Ge4+ constituents. In particular, luminescence intensity of Li2MgTiO4: 0.002Mn4+, 0.1Ge4+ increased by 152% under 468 nm excitation, and the thermostability of emission intensity increases from 22% (y = 0) to 43% (y = 0.1), which is about twice as much. Finally, pc-LED device was fabricated via the red phosphor Li2MgTiO4: 0.002Mn4+,0.1Ge4+ coated on a 470 nm ultraviolet chip. By changing the proportion of the phosphor, the electroluminescence spectra of pc-LED device could match well with the absorption regions of plant pigments. Therefore, Li2MgTiO4: 0.002Mn4+, 0.1Ge4+ phosphor has potential application in plant lighting. Furthermore, this work can offer some helpful references for improving luminescent efficiency by simply modulating the chemical composition.  相似文献   

3.
Developing environment-friendly dual-emission phosphors of both blue–cyan and deep-red lights is desirable for the utilized indoor plant lighting research. Notably, the naked 6s and 6p Bi3+ ions are sensitive to the lattice sites, which emit from Ultraviolet (UV) to red lights in various crystal compounds. Meanwhile, the 2E → 4A2g transition of Mn4+ ions promises its deep-red light emissions, which satisfies the demand for specific wavelength lights for plants growth. Hence, a Bi3+/Mn4+ co-doped Sr2LaGaO5: Bi3+, Mn4+ (SLGO:Bi3+:Mn4+) phosphor was finally synthesized. The phase, micromorphology and luminescent properties were systematically evaluated. Upon excitation at 350 nm light, dual emissions of both blue–cyan (470 nm) and deep-red (718 nm) lights were observed. Besides, due to the pronounced photoluminescence (PL) spectral overlap between Bi3+ and Mn4+ ions, a potential energy transfer process from Bi3+ to Mn4+ ions was confirmed. The relative PL intensities between Bi3+ and Mn4+ ions can be tuned just by adjusting the Mn4+ ion concentration. Besides, Li+ co-doping has been evidenced to improve the deep-red emissions (718 nm) of SLGO:0.005Mn4+ due to charge compensation and rationally designed lattice distortion, together with the improved thermal stability. Finally, the emissions of SLGO:Bi3+, Mn4+, Li+ phosphor suit properly with the absorption of the four fundamental pigments for plant growth, indicating that the prepared phosphorescent materials may have a prospect in plant light-emitting diodes lighting.  相似文献   

4.
Artificial light source for indoor cultivation has been vastly impeded by the lack of high far red emitting phosphors. Recently, Mn4+ activated phosphors were reported to be promising luminescent materials to solve above matter. In this study, controllable design of Ca14Al10Zn6O35:0.15Mn4+ (CAZO:0.15Mn4+) far red emitting phosphors was realized via pH assisted hydrothermal approach. The pure CAZO:0.15Mn4+ phosphors were obtained merely when the reaction pH was 1 or 2. Meanwhile, by adjusting the pH value of the reaction solution, far red emission CAZO:0.15Mn4+ phosphors with grains, sphere-like as well as aggregated bulk particles can be achieved at pH =?4, pH =?6 and pH =?10, respectively. Furthermore, the structures and morphologies depended photoluminescence (PL) performances of CAZO:0.15Mn4+ were checked. The best PL performance was found for the phosphor produced at pH =?6, while over acidic or alkaline conditions would lower the emission intensity. In addition, this phosphor also exhibit good thermal resistance which can maintain 78% initial intensity at 150?°C. The practical indoor tobacco cultivation demonstrated that CAZO:0.15Mn4+ obtained through this pH adjusted hydrothermal route is a promising phosphor for indoor plant growth lighting.  相似文献   

5.
Blue and far-red light play a key role in plant growth, so it is necessary to develop blue and far-red dual emitting phosphors. However, the match between phosphors and plant pigments is not satisfactory. In this work, we synthesized a series of blue and far-red dual emission Gd2MgTiO6: Bi3+, Cr3+ (GMTO: Bi3+, Cr3+) phosphors and discussed the luminescence performance. The blue emission at 430 nm is ascribed to 3P1 → 1S0 transition of Bi3+ and the far-red emission is ascribed to 4T2 → 4A2 and 2E → 4A2 transitions of Cr3+. Notably, because of the energy competition between Cr3+ ions and host materials, the luminescence tuning realized with the content of Cr3+ doping. In addition, an energy-transfer performance occurred from Bi3+ ions to Cr3+ ions and the photoluminescence intensity of Cr3+ can be enhanced by Bi3+. The pc-LEDs devices were synthesized by GMTO: Bi3+, Cr3+ phosphor, and ultraviolet (UV) chips. Finally, the emission of GMTO: Bi3+, Cr3+ phosphor matched well with the absorption spectra of plant pigments which indicated the potential applications in LED plant lamp.  相似文献   

6.
《Ceramics International》2020,46(12):20173-20182
Currently, phosphor-converted LEDs (pc-LEDs) are revolutionizing the industry of plant growth lighting. To meet the requirements of this technology, phosphors with tunable photoluminescence, high thermal stability and luminous intensity are required. Herein, we found that the simple substitution of yttrium for lanthanum in La2MgTiO6:Mn4+ (LMT:Mn4+) system could satisfy above three criteria simultaneously. The photoluminescence properties can be regulated by continuously controlling the chemical composition of La2-xYxMgTiO6:Mn4+ solid solution. The La sites are occupied by Y ions, causing a significant blue shift in the emission spectra which owing to the change of local crystal field strengthen. Meanwhile, the thermal stability and decay lifetimes are also varied due to the variation of local structure and band gap energy. The thermal stability of the material reaches 83.5% at 150 °C, which is better than the reported La2MgTiO6:Mn4+ and Y2MgTiO6:Mn4+ phosphors. The electronic luminescence (EL) of pc-LED devices using La2-xYxMgTiO6:Mn4+ red phosphor is evaluated, which matching the absorption regions of plant pigments well, reflecting the superiority of the studied phosphors in plant growth lighting areas.  相似文献   

7.
《Ceramics International》2022,48(24):36140-36148
Non-rare earth Mn4+ ion-doped red oxide phosphors have great potential for applications in warm white light-emitting diodes (wLEDs) due to their low cost and stable physicochemical properties. Herein, a series of Ba2LaTaO6 (BLTO): Mn4+ phosphors were successfully synthesized by the high-temperature solid-state method. The theoretical values of the band gap calculated by the density functional theory are close to the experimental values obtained by the absorption spectroscopy. In addition, the phosphors have a broad excitation band in the wavelength range of 280–550 nm and emit red light at the peak wavelength of 681 nm under excitation. The concentration quenching of the BLTO: Mn4+ phosphor was caused by dipole-dipole interactions. The activation energy and the average decay lifetimes of the samples were calculated. Meanwhile, the effects of synthesis temperature and Li+ ion doping on the luminescence performance of the samples were also investigated. Satisfactorily, the color purity and internal quantum efficiency of the phosphor reached 98.3% and 26.8%, respectively. Further, the samples were prepared as red-light components for warm wLEDs. The correlated color temperature, color rendering index, and luminous efficiency of the representative devices driven by 60 mA current were 5190 K, 83.3, and 81.59 lm/W, respectively. This work shows that the BLTO: Mn4+ red phosphor with excellent luminescence performance can be well applied to warm wLEDs.  相似文献   

8.
《Ceramics International》2021,47(23):33152-33161
The Mn4+-doped Ca2MgTeO6 (CMTO) far-red emitting phosphors with double perovskite-type structure were successfully synthesized. Upon near-ultraviolet (n-UV, 300 nm) light excitation, the as-prepared phosphors showed far-red light at 700 nm attributed to the 2Eg4A2g transition of Mn4+ ion. The doping concentration of the CMTO:xMn4+ samples was optimized to be 0.8 mol%. The relevant mechanism of concentration quenching was demonstrated as the dipole-dipole interaction. Furthermore, solid solution and impurity doping strategies were adopted to improve the far-red emission of the luminescence-ignorable CMTO:Mn4+ phosphor. Series of Ca2MgTe(1−y)WyO6:0.8 mol%Mn4+ (y = 0–100 mol%) solid solution and Ca2−zLnzMgTe0.6W0.4O6:Mn4+ (Ln = La, Y, and Gd, z = 10 mol%) phosphors were synthesized through the above two strategies. The luminescence intensity of the optimal Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was 13.7 times that of the CMTO:Mn4+ phosphor and 2.51 times that of red commercial phosphor K2SiF6:Mn4+. Notably, both CMTO:Mn4+ and Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphors exhibited remarkable thermal stability compared with most Mn4+-doped phosphors. Finally, the highly efficient Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was successfully applied in fabricating the warm white light diode (w-LED). This working along both lines strategy exhibited great potential for luminescence optimization of Mn4+-doped oxide phosphors.  相似文献   

9.
The phosphors LiSrPO4:Gd3+ and LiSrPO4:Gd3+, Pb2+ with different concentration of Gd3+ and Pb2+ were synthesized by combination of re-crystallization and modified solid state diffusion method. The synthesized phosphors were characterized using XRD, SEM and PL spectroscopies. The PL excitation spectra of LiSrPO4:Gd3+ phosphor exhibit peak at 275 nm due to the 8S7/24IJ transition of Gd3+ ions and gave narrow UVB emission at 312 nm. The effect of Pb2+ ions on the PL properties of LiSrPO4:Gd3+have also been investigated. Upon the addition of Pb2+ ions, the excitation of phosphors shows broad peak with maximum at 247 nm, overlapping the Hg 253.7 nm line. This addition of Pb2+ ions improved the emission intensity of narrow band UVB i.e. 312 nm under the excitation of 247 nm. The phosphor could be good candidate as phototherapy lamp phosphor material.  相似文献   

10.
Red phosphor is indispensable to achieve warm white light in the white light diode (WLED) application. However, the current red phosphors suffer from high cost and harsh synthesis conditions. In this study, an oxide-based rare-earth-free red-emitting phosphor Li3Mg2NbO6:Mn4+ (LMN:Mn4+) has been successfully synthesized by a simple solid-state reaction method. The relationship between crystal structure and luminescence was investigated in detail. The site occupancy of the doping Mn4+ ion in the LMN host has been discussed from the point of bond valence sum. How the coordination environment of doping Mn4+ affects the energy level of doping Mn4+ ion has been illustrated via the Tanabe-Sugano energy-level diagram. Moreover, warm white light has been obtained using LMN:Mn4+ as compensator to the YAG:Ce3+.  相似文献   

11.
《Ceramics International》2023,49(19):31607-31617
Optical information encryption based on luminescence materials have received much attention recently. However, the single luminescence mode of the luminescence materials greatly limits its anti-counterfeiting application with high safety level. Here, a series of luminescence materials of Tb3+ and Bi3+ co-doped ZnGa2O4 phosphors with great correspondence in photoluminescence (PL), persistent luminescence (PersL), and thermoluminescence (TL) modes was synthesized by the conventional solid-phase method for the application in multi-modal anti-counterfeiting fields. Under the excitation of 254 nm, ZnGa1.99O4:0.01 Tb3+, yBi3+ (y = 0.001,0.002) sample exhibited a broad blue emission band (the transition from [GaO6]) at 440 nm and the characteristic emission peaks of Tb3+ at 495 nm, 550 nm, 591 nm and 625 nm, corresponding to the transitions of 5D4-7Fn (n = 6, 5, 4, 3), respectively. Interestingly, the co-doping of Bi3+ ions improve the crystallinity and particle size of the phosphor, subsequently enhanced the PL intensity of Tb3+ to 6 times that of Tb3+ singly doped ZnGa2O4 phosphor. Further, the flexible films with multi-modal luminescence properties have been fabricated through the unique TL and PersL characteristics of ZnGa2O4: Tb3+, Bi3+ phosphors, including “Optical information storage film”, “snowflake and characters” and “QR code”. Moreover, a set of optical information encryption is obtained by combining ZnGa2O4:Tb3+, Bi3+ phosphor and red emitting phosphor. The results indicate that ZnGa2O4:Tb3+, Bi3+ phosphor with multi-modal stimulus response can be expected to be potentially used in the applications of optical information storage and anti-counterfeiting fields.  相似文献   

12.
KSr(Gd,Y)(PO4)2: Tb3+ phosphors were synthesized using the high‐temperature solid‐state reaction method. The VUV–UV spectroscopic properties of these phosphors were studied. The results show that efficient energy transfer (ET) from Gd3+ to Tb3+ occurs in this system, and the ET efficiency increases with increasing of Tb3+ doping concentrations, which is evidenced that both the emission intensity and decay time of Gd3+ decreases with increasing Tb3+ doping concentrations. Visible quantum cutting via cross relaxation between the neighboring Tb3+ ions was observed in the high Tb3+ concentration doped sample. In addition, the emission color of KSr(Gd,Y)(PO4)2: Tb3+ phosphors can be tuned from blue to yellowish‐green by varying the doping concentration of Tb3+. Under 147 nm excitation, the sample KSrGd0.5(PO4)2: 0.5Tb3+ exhibits the strongest emission, which is about 70% of the commercial green‐emitting phosphor Zn2SiO4: Mn2+ indicating the potential application of this phosphor for plasma display panels, Hg‐free lamps, and three‐dimensional displays.  相似文献   

13.
To produce natural and vivid color, the color rendering index of white light-emitting diodes (WLEDs) with single phosphors is usually lower than 70, which is problematic for LED applications. A commonly used method to resolve this issue is to enhance the red component of WLEDs. In the present study, Hf4+ and Mn4+ co-doped Li2MgTiO4 red phosphors are synthesized using a solid-state reaction method. When this red phosphor is excited at 397 and 468?nm, it exhibits weak reabsorption in the blue region and emits a broad and deep red emission band in the range of 640–750?nm, which is attributed to the 2Eg4A2?g transition. With 5?mol% HfO2 dopant, the photoluminescence intensity is enhanced by 1.45-fold and thermal stability is increased by 7.7%. Moreover, this red phosphor was applied to a red phosphor-in-glass (RPiG) optical device with a low-melting TeO2-B2O3-ZnO-Na2O-WO3 glass system. In the RPiG melting process, Li2MgTiO4:Mn4+, Hf4+ red phosphor triggered neither a chemical reaction nor severe degradation, indicating good thermal stability. Li2MgTiO4:Mn4+, Hf4+ has potential as a red emission material for warm WLED applications.  相似文献   

14.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   

15.
Series of UV excited Ba3Lu(PO4)3:Tb3+,Mn2+ phosphors with tunable green to red emissions had been prepared using solid state reactions. Powder X-ray diffraction and Rietveld structure refinement were used to investigate the phase purity and crystal structure of the prepared samples. Under UV excitation, the Ba3Lu(PO4)3:Tb3+,Mn2+ samples exhibited not only the typical Tb3+ emission peaks but also the broad emission band of Mn2+ ions due to the efficient Tb3+→Mn2+ energy transfer which had been verified by luminescence spectra and decay curves. Utilizing the Inokuti-Hirayama model, the Tb3+→Mn2+ energy transfer mechanism was determined to be the electronic dipole–quadrupole interaction. Moreover, the emission spectra of Ba3Lu(PO4)3:0.80Tb3+,0.015Mn2+ sample at different temperatures manifested that our prepared phosphors possessed good thermal stability. The luminescence properties investigation results revealed the potential value of Ba3Lu(PO4)3F:Tb3+,Mn2+ in application for UV excited phosphor converted white light emitting diodes.  相似文献   

16.
Sm3+, Mn4+ co-activated LaGaO3 phosphors, giving the characteristic emissions of orange and red emission simultaneously, were prepared by a solid-state reaction. Their luminescence properties, energy transfer behavior, thermal stability, and ratiometric temperature sensing performance were investigated. Thanks to the inhibition of energy transfer between Sm3+ and Mn4+ ions at high temperature and the reconstruction of the traps, the distinct optical behavior of the involved activators dependent on the ambient temperature was evaluated. Anti-thermal quenching performance of Sm3+ ions along with the emission declination of Mn4+ ions was observed. Hence, the optical thermometry characteristics of the resultant phosphor based on the fluorescent intensity ratio (orange/red) realize a recorded temperature sensitivity of 4.19% K−1 and 2.09% K−1. Moreover, the as-explored film combined with the LaGaO3: Sm3+, Mn4+ phosphor is demonstrated to be a promising multi-color optical thermometer.  相似文献   

17.
A series of LaCaGaO4:xBi3+,yEu3+ (x = 0.002–0.04, y = 0.02–0.45) phosphors with adjustable emission colors were synthesized by high-temperature solid-state reaction. The samples were identified as pure phases by X-ray diffraction and Rietveld refinement, and the crystal structures were analyzed in detail. The LaCaGaO4:xBi3+ phosphor shows an intense blue emission under near-ultraviolet excitation, originating from the 3P11S0 transition. The spectrum analysis reveals that the Bi3+ ions occupy two luminescence centers in the LaCaGaO4 host and that energy transfer can occur. A model of the energy transfer between the Bi3+ and Eu3+ ions was also created and studied in detail. As the Eu3+-concentration increased, the emission color of the LaCaGaO4:0.005Bi3+,yEu3+ phosphor changed from blue to pink to red. In addition, the fluorescence lifetime, quantum yield, thermal stability, and other properties of the phosphors were characterized and analyzed. Finally, two white light-emitting diode devices with Ra values of 96.6 and 95 and correlated color temperatures of 4578 and 3324 K were fabricated, indicating the potential of phosphors for warm white lighting applications.  相似文献   

18.
Ln0.97VO4:Bi0.033+ and (Ln10.5, Ln20.5)0.97VO4:Bi0.033+ (where Ln=La, Gd and Y) down conversion (DC) phosphors have been synthesized by a novel co-precipitation technique followed by heat-treatment. The influence of lanthanide host composition on crystal structure, luminescence and pertinent optical properties have been investigated by various spectroscopic techniques: XRD, SEM, FT-IR and PL. The produced phosphors have exhibited an intense greenish-yellow emission, upon UV-irradiation. A broad band excitation (280–350 nm) ascribed to 1S03P1 and an intense broad greenish-yellow emission band (400–700 nm) attributed to 3P11S0 transition, owing to Bi3+ ions have been observed. PL spectra revealed that the phosphors with Gd – containing host has exhibited a better luminescence among the others. The luminescence intensity sequence in descending order was as follows: GdVO4→(Gd, Y)VO4→(La, Gd)VO4→(La, Y)VO4→YVO4→LaVO4: Bi3+. These phosphors can efficiently convert the UV-photons in a broad range from 280–350 nm of feckless UV-rays into the absorbable visible emission for c-Si solar cells, based on the spectral matching phenomena. In view of the better fluorescence and pertinent optical properties, the phosphor with composition Gd0.97VO4: Bi0.033+ is a suggestible sought UV-absorbing spectral converter, in its thin transparent DC form for c-Si solar cells for better harvesting the solar energy.  相似文献   

19.
《Ceramics International》2015,41(4):5525-5530
A series of single-phase Eu3+, Tb3+, Bi3+ co-doped LaPO4 phosphors were synthesized by solid-state reaction at 800 °C. Crystal structures of the phosphors were investigated by X-ray diffraction (XRD). A monoclinic phase was confirmed. The excitation (PLE) and emission (PL) spectra showed that the phosphors could emit red light centered at 591 nm under the 392 nm excitation, which is in good agreement with the emission wavelength from near-ultraviolet (n-UV) LED chip (370–410 nm). The results of PLE and PL indicated that the co-doped Tb3+ and Bi3+could enhance emission of Eu3+ and the fluorescent intensities of the phosphors excited at 392 nm could reach to a maximum value when the doping molar concentration of Tb3+ and Bi3+ is about 2.0% and 2.0%, respectively. The co-doping Tb3+ and Bi3+ ions can strengthen the absorption of near UV region. They can also be efficient to sensitize the emission of Eu3+, indicating that the energy transfer occurs from Tb3+ and Bi3+ to Eu3+ ions. From further investigation it can be found that co-doping Tb3+ and Bi3+ ions can also induce excitation energy reassignment between 5D07F1 and 5D07F2 in these phosphors, and result in more energy assignment to 5D07F2 emission in LaPO4:Eu3+, Tb3+, Bi3+. Our research results displayed that La0.94PO4:Eu3+0.02, Tb3+0.02, Bi3+0.02 could be a new one and could provide a potential red-emitting phosphor for UV-based white LED.  相似文献   

20.
A novel Mn4+ activated Ca2LaSbO6 (CLS) far-red phosphor was synthesized by high temperature solid state reaction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence spectra, ultraviolet-visible spectra, luminescence decay times, emission-temperature relationship and internal quantum efficiency (IQE). It is found that CLS:Mn4+ phosphor has a strong broad excitation band in the range of 200–550?nm. The samples can be excited by ultraviolet and blue light. There is a wide emission band centered at 685?nm between 600?nm and 760?nm. The optimum doping concentration of Mn4+ is approximately 0.5?mol%. In addition, all the CIE chromaticity coordinates of CLS:0.005Mn4+ located at far-red region. The concentration quenching mechanism is the dipole-dipole interaction of Mn4+ activator. Importantly, the CLS:0.005 Mn4+ sample has an IQE of up to 52.2%. Finally, a 365?nm ultraviolet light emitting diode (LED) chip combined with 0.5?mol% Mn4+ far-red phosphor was used to fabricate the LED device. All the results indicated that CLS:Mn4+ phosphors have potential applications in indoor plant cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号