首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The color‐tunable up‐conversion (UC) emission and infrared photoluminescence and dielectric relaxation of Er3+/Yb3+ co‐doped Bi2Ti2O7 pyrochlore thin films prepared by a chemical solution deposition method have been investigated. The pyrochlore phase structure of Bi2Ti2O7 can be stabilized by Er3+/Yb3+ co‐doping. Intense color‐tunable UC emission and infrared photoluminescence can be detected on the thin films excited by a 980 nm diode laser. Two UC emission bands centered at 548 and 660 nm in the spectra can be assigned to 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ions, respectively. A Stokes infrared emission centered at 1530 nm is due to 4I13/24I15/2 transition of Er3+ ions. The dependence of UC emission intensity on pumping power indicates that the UC emission of the thin films is a two‐photon process. The thin films also exhibit a relatively high dielectric constant and a low dissipation factor as well as a good bias voltage stability. Temperature‐ and frequency‐dependent dielectric relaxation has been confirmed. This study suggests that Er3+/Yb3+ co‐doped Bi2Ti2O7 thin films can be applied to new multifunctional photoluminescence dielectric thin‐film devices.  相似文献   

2.
《Ceramics International》2023,49(6):9069-9089
The process conditions for selectively forming crystal polymorphs in Er3+-doped Bi2O3 films deposited on Si, SiO2, and C-plane sapphire substrates were systematically investigated. Bi2O3:Er films were deposited at either room temperature or 300 °C and subsequently post annealed to promote crystallization. The critical factor controlling the crystal polymorphs was Er content. When the Er content was less than 1.5 at.%, only α-Bi2O3 phase nucleated upon post annealing. Deposition at 300 °C somewhat lowered the oxidization state, under which β-Bi2O3 structure appeared at lower temperatures and α-Bi2O3 structure appeared at higher temperatures. When the films were doped with over 2 at.% Er3+ ions, the excess Er2O3 stabilized the δ-Bi2O3 structure as the lowest temperature phase. The universal phase transition scheme with increasing annealing temperature was δ-Bi2O3 → β-Bi2O3 → α-Bi2O3. The δ → β transition proceeded through splitting each diffraction peak of δ-Bi2O3 into two components of β-Bi2O3, indicating a correlation between the structures of β-Bi2O3 and δ-Bi2O3. The γ-Bi2O3 phase appeared only in films on Si(100) substrates and after vacuum annealing, suggesting the formation of sillenite (Bi12SiO20). Deposition on C-plane sapphire by using H2O as the oxygen source gas produced a highly (111)-oriented δ-Bi2O3 structure, whereas deposition with O2 yielded a randomly oriented δ-Bi2O3 structure. At Er content exceeding 4 at.%, δ-Bi2O3 was the primary phase in the films on SiO2. The photoluminescence (PL) activity of dopant Er3+ under excitation at a wavelength of 532 nm strongly depended on the crystal polymorphs. α-Bi2O3:Er exhibited intense and stable PL spectra consisting of eight Stark splitting lines. PL from γ-Bi2O3:Er exhibited much weaker two emission lines. δ-Bi2O3:Er and β-Bi2O3:Er films were not emission-active at all. However, δ-Bi2O3:Er film on SiO2 with an Er content of 4 at.% exhibited an intense and broad emission at 1530 and 1560 nm.  相似文献   

3.
《Ceramics International》2023,49(7):10829-10838
Bi2O3:Yb3+/Er3+ nanoparticles with flower-like morphology were easily synthesized by urea-assisted coprecipitation reactions. The influences of calcination temperature and doping concentration on the crystal phase structures of Bi2O3 and Bi2O3:x%Yb3+/2%Er3+ (x = 0–30) were systematically investigated by XRD analysis. The experimental results revealed that lanthanide doping could effectively improve the thermal stability of Bi2O2CO3 samples, and the monoclinic-to-tetragonal-to-cubic phase transitions of Bi2O3 were implemented by controlling calcination temperatures and introducing smaller lanthanide ions (Ln3+) into the host lattices. Based on the analysis of TG and DSC curves, we found that the fundamental reason for this phase transition was the different stabilities of each crystalline phase under different doping conditions. Upon 980 nm laser excitation, Bi2O3:x%Yb3+/2%Er3+ samples presented near single-band red upconversion emission owing to the efficient energy reabsorption of the Bi2O3 host to Er3+ emission.  相似文献   

4.
《Ceramics International》2022,48(24):36347-36357
Er3+ and/or Cr3+ doped transparent ZnGa2O4 glass-ceramics were successfully obtained by one-step heat treatment. The results showed that Er3+ ions can enrich around ZnGa2O4 crystal to reduce the crystallization activation energy and promote the growth of ZnGa2O4 crystal. Cr3+ ions may successfully occupy the Ga3+ sites in the ZnGa2O4 lattice but will increase crystallization activation energy and inhibit the growth of the ZnGa2O4 crystal. Before and after crystallization, the coordination-field intensity of Cr3+ ions increased from 2.17 to 2.86, resulting in the peak position of its emission spectra moving from 850 to 688 nm. By excitation at 378 nm, the precursor glass co-doped with Er3+ and Cr3+ ions only showed the characteristic emission peaks belonging to Er3+ ions. After heat treatment, the characteristic emission peaks belonging to Er3+ and Cr3+ ions existed simultaneously, and the emission color changed from green to yellow. By excitation at 980 nm, there were only characteristic emission peaks belonging to Er3+ ions of the Er3+/Cr3+ co-doped glasses before and after heat treatment. The results showed that the Er3+ and/or Cr3+ doped ZnGa2O4 glass-ceramics have adjustable luminescence ability and show potential application value in the field of luminescence display.  相似文献   

5.
The nanocrystalline single-phase Er3+-doped Yb3Ga5O12 garnets have been prepared by the sol-gel combustion technique with a crystallite size of ≈30 nm. The presence of Yb3+ in garnet hosts allows their efficient excitation at the ≈977 nm wavelength. The Er3+ doping of Yb3Ga5O12 garnet host results in deep red Er3+: 4F9/2 → 4I15/2 upconversion photoluminescence (UCPL) emission. The dominance of the red UCPL emission over the green Er3+: 4F7/2/2H11/2/4S3/2 → 4I15/2 component was investigated using the measurement of the steady-state and time-dependent Er3+ and Yb3+ emission spectra in combination with the power-dependent UCPL emission intensity. The proposed upconversion mechanism is discussed in terms of the Er3+ → Yb3+ energy back transfer process as well as Yb3+(Er3+) → Er3+ energy transfer and Er3+ ↔ Er3+ cross-relaxation processes. The studied Er3+-doped Yb3Ga5O12 garnet may be utilized as a red upconversion emitting phosphor.  相似文献   

6.
Here, Bi3+, Er3+ co-activated gadolinium phosphors with multimode emission properties are prepared, which can emits blue, green, and orange light under the excitation of ultraviolet, 980 and 1550 nm, respectively. Moreover, BaGd2O4:Bi3+, Er3+ can show multicolor luminescence under different excitation conditions, such as pump light source, ambient temperature, working current, and other factors. Based on the dynamic luminescence characteristics, the dynamic anti-counterfeiting experiments are designed based on the phosphor. At the same time, the material also shows multimode temperature sensing characteristics. Under the excitation of 980 nm laser, three strong up-conversion signals Er3+ ions are generated at 528 nm (2H11/2), 555 nm (4S3/2), and 668 nm (4F9/2), which have different temperature dependences. Based on the fluorescence intensity ratio between thermal-coupled energy levels (2H11/2/4S3/2) and nonthermal-coupled energy levels (2H11/2/4F9/2) of Er3+ ions, respectively, the dual-mode temperature thermometer was constructed with high-temperature sensitivity. In addition, the fluorescence lifetime of Bi3+ ions also has a strong temperature dependence, which can be used as another temperature detection signal, greatly improving the stability of thermometers under harsh conditions. Therefore, the material has a bright prospect in the field of anti-counterfeiting and temperature sensing.  相似文献   

7.
A novel pale-yellow Ba2ZnGe2O7:Bi3+ phosphor with site-selected excitation and small thermal quenching was synthesized by conventional solid-state sintering. The crystal structure and luminescence properties have been investigated in detail for the first time using XRD patterns, photoluminescence spectra, diffuse reflection spectra, decay curves, and temperature-dependent emission spectra. The results reveal that the excitation spectrum of Ba2ZnGe2O7:Bi3+ phosphor locates in the near-ultraviolet region of 300-400 nm, and its emission shows an obvious site-selective excitation phenomenon since Bi3+ ions occupy two different crystallographic sites in the Ba2ZnGe2O7 host. When excited under 360 nm, the phosphors show a pale-yellow emission in the range of 400-700 nm with the maximum peaking at 520 nm, while when excited under 316 nm, the phosphors show a blue emission in the range of 400-700 nm with the maximum peaking at 480 nm. In addition, the emission of Ba2ZnGe2O7:Bi3+ can also be easily controlled by changing the Bi3+ concentration. The Ba2ZnGe2O7:Bi3+ phosphor has small thermal quenching, and its emission intensity only decreases by 2% at 200°C. The results indicate that this novel pale-yellow Ba2ZnGe2O7:Bi3+ phosphor could be conducive to the development of white light-emitting diodes.  相似文献   

8.
《Ceramics International》2022,48(9):12578-12584
Rare earth ions doped luminescent materials have drawn considerable attention as they can generate both upconversion and downshifting emissions. Here, the rare earth ions Pr3+/Er3+ codoped perovskite oxide Bi4Ti3O12 is proposed as a dual-mode temperature sensor and anti-counterfeiting material based on its up/down-conversion luminescence. Under 481 nm excitation, the intensity ratio of green emission (~523 nm in Er3+) and red emission (~611 nm in Pr3+) brings about a very high absolute sensitivity (Sa) of 2% K?1 at 568 K and a maximum relative sensitivity (Sr) of 1.03% K?1 at 478 K in the temperature range of 298–568 K. In addition, the upconversion green emissions of Er3+ yield a relatively-high Sr of 1.1% K?1 at 298 K with 980 nm excitation, which can provide self-calibration coupled with down-conversion luminescence temperature sensing mode. Besides, this phosphor also shows tunable luminous colors for the potential application in the anti-counterfeiting field under various excitation wavelengths.  相似文献   

9.
Yb3+/Er3+codoped La10W22O81 (LWO) nanophosphor rods have been successfully synthesized by a facile hydrothermal assisted solid state reaction method, and their upconversion photoluminescence properties were systematically studied. X-ray diffraction patterns revealed that the nanophosphors have an orthorhombic structure with space group Pbcn (60). A microflowers-like morphology with irregular hexagonal nanorods was observed using field emission scanning electron microscopy for the Yb3+(2 mol%)/Er3+(2 mol%):LWO nanophosphor. The shape and size of the nanophosphor and the elements along with their ionic states in the material were confirmed by TEM and XPS studies, respectively. A green upconversion emission was observed in the Er3+: LWO nanophosphors under 980 nm laser excitation. A significant improvement in upconversion emission has been observed in the Er3+: LWO nanophosphors by increasing the Er3+ ion concentration. A decrease in the upconversion emission occurred due to concentration quenching when the doping concentration of Er3+ ions was greater than 2 mol%. An optimized Er3+(2 mol%): LWO nanophosphor exhibited a strong near infrared emission at 1.53 μm by 980 nm excitation. The green upconversion emission of Er3+(2 mol%): LWO was remarkably enhanced by co-doping with Yb3+ ions under 980 nm excitation because of energy transfer from Yb3+ to Er3+. The naked eye observed this upconversion emission when co-doping with 2 mol% Yb3+. In order to obtain the high upconversion green emission, the optimized sensitizer concentration of Yb3+ ions was found to be 2 mol%. The upconversion emission trends were studied as a function of stimulating laser power for an optimized sample. Moreover, the NIR emission intensity has also been enhanced by co-doping with Yb3+ ions due to energy transfer from Yb3+ to Er3+. The energy transfer dynamics were systematically elucidated by energy level scheme. Colorimetric coordinates were determined for Er3+ and Yb3+/Er3+: LWO nanophosphors. The energy transfer mechanism was well explained and substantiated by several fluorescence dynamics of upconversion emission spectra and CIE coordinates. The results demonstrated that the co-doped Yb3+(2 mol%)/Er3+(2 mol%): LWO nanophosphor material is found to be a suitable candidate for the novel upconversion photonic devices.  相似文献   

10.
《Ceramics International》2022,48(4):5267-5273
Yb3+/Ho3+ codoped and Yb3+/Er3+/Ho3+ tridoped TeO2–BaF2–LaF3–La2O3 (TBLL) fluorotellurite glasses with low OH? absorption (0.026 cm-1), high glass transition temperature (434 °C) and low phonon energy (784 cm-1) were prepared. Their mid-infrared fluorescence properties and related energy transfer (ET) mechanism were studied under 980 nm excitation. A strong emission at 2.85 μm was realized in Yb3+/Ho3+ codoped tellurite glass, which was attributed to the high-efficiency ET from Yb3+ ions to Ho3+, and the ET efficiency was 91.1%. Further introduction of Er3+ ions induced stronger 2.85 μm emission, and the ET efficiency was improved to 96.2%, ascribed to the establishment of more ET channels and Er3+ ions playing the role of ET bridge between Yb3+ and Ho3+ ions. These results indicate that the Yb3+/Er3+/Ho3+ tridoped tellurite glass could be a hopeful gain medium material for the ~3 μm fiber laser.  相似文献   

11.
Ho3+/Yb3+‐codoped Bi2Ti2O7 pyrochlore thin films were prepared by a chemical solution deposition method, and their visible up‐conversion (UC) photoluminescence and dielectric relaxation were studied. Ho and Yb can be doped into Bi2Ti2O7 lattice and single pyrochlore phase is maintained. Intense visible UC photoluminescence can be observed under the excitation of a 980‐nm diode laser. Two UC emission bands centered at 551 nm and 665 nm in the spectra can be assigned to 5F4, 5S25I8 and 5F55I8 transitions of Ho3+ ions, respectively. The dependence of their UC emission intensity on pumping power indicates that both the green and red emissions of the thin films are two‐photon process. In addition, a Stokes near‐infrared emission centered at 1200 nm can be detected, which is due to 5I65I8 transition of Ho3+ ions. The thin films prepared on indium tin oxide–coated glass substrates exhibit a relatively high dielectric constant and a low dielectric loss as well as a good bias voltage stability. The dielectric relaxation of the thin films was also analyzed based on the temperature‐ and frequency‐dependent dielectric properties. This study suggests that Ho3+/Yb3+‐codoped Bi2Ti2O7 thin films are promising materials for developing multifunctional optoelectronic thin film devices.  相似文献   

12.
《Ceramics International》2017,43(16):13505-13515
ZnO-TiO2 composites co-doped with Er3+ and Yb3+ ions were successfully synthesized by powder-solution mixing method and their upconversion (UC) luminescence was evaluated. The effect of firing temperature, ZnO/TiO2 mixing ratio, and dopant concentration ranges on structural and UC luminescence properties was investigated. The crystal structure of the product was studied and calculated in detail by means of X-ray diffraction (XRD). Also, the site preference of Er3+ and Yb3+ ions in the host material was considered and analyzed based on XRD results and UC luminescence characteristics. Brightest UC luminescence was observed in the ZnO-TiO2:Er3+,Yb3+ phosphor fired at 1300 °C in which the system consisted of mixed phases; Zn2TiO4, TiO2, RE2Ti2O7 and RE2TiO5 (RE = Er3+ and/or Yb3+). Under the excitation of a 980 nm laser, the two emission bands were detected in the UC emission spectrum, weak green band centered at 544 and 559 nm, and strong red band centered at 657 and 675 nm wavelengths in accordance with 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ion, respectively. The simple chemical formula equations, for explaining the site preference of Er3+ and Yb3+ ions in host crystal matrix, were generated by considering the Zn2TiO4 crystal structure, its crystal properties, and the effect of Er3+ and Yb3+ ions to the host crystal matrix. The UC emission intensity of the products was changed by varying ZnO/TiO2 mixing ratios, and Er3+ and Yb3+ concentrations. The best suitable condition for emitting the brightest UC emission was 1ZnO:1TiO2 doped with 3 mol% Er3+, 9 mol% Yb3+ fired at 1300 °C for 1 h.  相似文献   

13.
A conventional high temperature solid state method was utilized to prepare CaO-Y2O3, which is a potential candidate for manufacturing crucible material to melt titanium and titanium alloys with low cost. Meanwhile, Yb3+ ions and Er3+ ions were selected as the sensitizers and activators respectively to dope into CaO-Y2O3, aimed at providing real-time optical thermometry during the preparation process of titanium alloys realized using fluorescence intensity ratio (FIR) technology. The results reveal that a high measurement precision can be acquired by using the Stark sublevels of Er3+ 4F9/2 to measure the temperature with a maximum absolute error of only about 3 K. In addition, by analyzing the dependence of 4I13/2 → 4I15/2 transition on pump power of 980 nm excitation wavelength, it was found that the laser-induced thermal effect has almost no influence on the temperature measurement conducted by using the FIR of the Stark sublevels of Er3+ 4I13/2, which means that a high excitation pump power can be used to obtain strong NIR emission and good signal-to-noise ratio for optical thermometry without the influence of the laser-induced thermal effect. All the results reveal that CaO-Y2O3: Yb3+/Er3+ is an excellent temperature sensing material with high measurement precision.  相似文献   

14.
Garnet‐type compound Ca3Ga2Ge3O12 and Cr3+‐doped or Cr3+/Bi3+ codped Ca3Ga2Ge3O12 phosphors were prepared by a solid‐state reaction. The crystal structure of Ca3Ga2Ge3O12 host was studied by X‐ray diffraction (XRD) analysis and further determined by the Rietveld refinement. Near‐infrared (NIR) photoluminescence (PL) and long‐lasting phosphorescence (LLP) emission can be observed from the Cr3+‐doped Ca3Ga2Ge3O12 sample, and the enhanced NIR PL emission intensity and LLP decay time can be realized in Cr3+/Bi3+ codped samples. The optimum concentration of Cr3+ in Ca3Ga2Ge3O12 phosphor was about 6 mol%, and optimum Bi3+ concentration induced the energy‐transfer (ET) process between Bi3+ and Cr3+ ions was about 30 mol%. Under different excitation wavelength from 280 to 453 nm, all the samples exhibit a broadband emission peaking at 739 nm and the intensity of NIR emission increases owing to the ET behavior from Bi3+ to Cr3+ ions. The critical ET distance has been calculated by the concentration‐quenching method. The thermally stable luminescence properties were also studied and the introduction of Bi3+ can also improve the thermal stability of the NIR emission.  相似文献   

15.
Sm3+‐doped glass 13SrO–2Bi2O3–5K2O–80B2O3 was fabricated by the conventional melt‐quenching technique. The glass‐ceramics were obtained by heating the as‐prepared glasses in air atmosphere at selected temperatures 550°C, 600°C, 615°C, and 650°C, respectively. The luminescence spectra of both Sm3+ and Sm2+ were detected in the ceramic heated at 650°C where crystalline phase is formed. The as‐prepared glass and the ceramics heated at 550°C, 600°C, and 615°C show only the emission due to Sm3+. In the sample heated at 650°C in air atmosphere, however, part of Sm3+ ions was converted to Sm2+, giving rise to sharp emission lines which are characteristic of Sm2+ in crystalline state. It is suggested that Sm2+ ions are located at Sr2+ site in the ceramic while Sm3+ ions are located at Bi3+ sites. The Sm2+‐doped glass‐ceramic has a high optical stability because the fluorescence intensity decreases by only about 8% of its initial value upon excitation at 488 nm Ar+ laser.  相似文献   

16.
《Ceramics International》2023,49(19):31607-31617
Optical information encryption based on luminescence materials have received much attention recently. However, the single luminescence mode of the luminescence materials greatly limits its anti-counterfeiting application with high safety level. Here, a series of luminescence materials of Tb3+ and Bi3+ co-doped ZnGa2O4 phosphors with great correspondence in photoluminescence (PL), persistent luminescence (PersL), and thermoluminescence (TL) modes was synthesized by the conventional solid-phase method for the application in multi-modal anti-counterfeiting fields. Under the excitation of 254 nm, ZnGa1.99O4:0.01 Tb3+, yBi3+ (y = 0.001,0.002) sample exhibited a broad blue emission band (the transition from [GaO6]) at 440 nm and the characteristic emission peaks of Tb3+ at 495 nm, 550 nm, 591 nm and 625 nm, corresponding to the transitions of 5D4-7Fn (n = 6, 5, 4, 3), respectively. Interestingly, the co-doping of Bi3+ ions improve the crystallinity and particle size of the phosphor, subsequently enhanced the PL intensity of Tb3+ to 6 times that of Tb3+ singly doped ZnGa2O4 phosphor. Further, the flexible films with multi-modal luminescence properties have been fabricated through the unique TL and PersL characteristics of ZnGa2O4: Tb3+, Bi3+ phosphors, including “Optical information storage film”, “snowflake and characters” and “QR code”. Moreover, a set of optical information encryption is obtained by combining ZnGa2O4:Tb3+, Bi3+ phosphor and red emitting phosphor. The results indicate that ZnGa2O4:Tb3+, Bi3+ phosphor with multi-modal stimulus response can be expected to be potentially used in the applications of optical information storage and anti-counterfeiting fields.  相似文献   

17.
《Ceramics International》2015,41(4):5765-5771
Trivalent erbium (Er3+)-doped K–Sr–Al phosphate glasses were prepared and studied their spectroscopic properties as a function of Er2O3 concentration. Judd–Ofelt analysis has been carried out for 1.0 mol% Er2O3-doped phosphate glass and in turn radiative properties have been evaluated for the excited levels of Er3+ ion. The radiative lifetime for the 4I13/2 level was found to be higher for the present glass when compared to other Er3+-doped glasses. The Er3+-doped glasses exhibit intense near infrared emission at 1.53 µm corresponds to 4I13/24I15/2 transition as well as green emission at 546 nm corresponding to 4S3/24I15/2 under 980 nm and 488 nm excitations, respectively. The emission cross-section spectrum for 1.0 mol% of Er2O3-doped glass has been evaluated using McCumber theory. The gain cross-section has been evaluated as a function of population inversion, which revealed that the lasing action would be achieved at 1.53 µm for a population inversion about 40%. Decay curves for the 4I13/2 level were measured and lifetimes have been determined for the studied glasses. The results indicate that the present glasses could be useful for laser as well as optical amplifiers at 1.53 µm.  相似文献   

18.
《Ceramics International》2016,42(8):9899-9905
Pr3+/Er3+-doped 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics have been fabricated at a low sintering temperature of 960°C using a sintering aid of Li2CO3. The effects of energy transfer between Pr3+and Er3+on their photoluminescence properties have been investigated. Our results reveal that the down-conversion emissions of Pr3+are weakened and the lifetimes are shortened by the co-doping of Er3+. As a result, when both Pr3+and Er3+are excited simultaneously, with increasing the concentration of Er3+, the green emissions from Er3+increase but the red emissions from Pr3+decrease. Moreover, the emission color of the ceramics can be reversibly changed between red, yellow and yellowish green by using excitation sources of different wavelengths. Strong up-conversion green emissions with short lifetimes arisen from Er3+have also been observed for the ceramics under the excitation of 980 nm. Owing to the Li2CO3 sintering aid, the low-temperature sintered ceramics also exhibit reasonably good ferroelectric and piezoelectric properties, and hence should be promising for multifunctional applications such as electro-optical coupling devices.  相似文献   

19.
《Ceramics International》2022,48(2):2230-2240
A series of BaBi2-xNb2ErxO9 ceramic compositions with different Er3+ concentration (x = 0.0–8 mol %) is synthesized by a conventional solid-state reaction method. The upconversion (UC) light emission under 980 nm excitation with different pump powers and luminescence-based temperature sensing ability of BaBi2-xNb2ErxO9 composition have been examined. The formation of a Bi-layered perovskite phase of BaBi2Nb2O9 is confirmed having an orthorhombic geometry and Fmmm space group. Shifts in the Raman modes indicate reduced interaction of Bi3+ ions with NbO6 octahedron leading to relaxation of structural distortion with increasing Er3+ content. The maximum value for remnant polarization and coercive field of doped BaBi2-xNb2ErxO9 ceramic for (x = 0.08) Erbium concentration comes out to be 2.9524 μC/cm2 and 49.8980 kV/cm. For an optimum content of x = 0.04, two strong UC green emission bands were observed at 549 nm via 4S3/2 → 4I15/2 transition and 527 nm via 2H11/2 → 4I15/2 transitions, and a weak red emission appears at 657 nm attributed to the 4F9/2 → 4I15/2 transition. Pump power dependence suggests that UC emission is a two-photon mechanism for red and green emission bands. Temperature sensing evaluated by the change in the fluorescence intensity ratio (I527/I549) indicates the highest sensitivity to be 0.00996 K?1 at 483 K for an optimum concentration of Er3+ at x = 0.04 in BaBi2-xNb2ErxO9 composition and is useful for non-contact optical thermometry.  相似文献   

20.
《Ceramics International》2017,43(4):3623-3630
The Er3+-doped bismuth titanate (Bi4Ti3O12, BIT) nanoparticles were synthesized by a combined sol–gel and hydrothermal method under a partial oxygen pressure of 30 bar. The composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering. They showed pure and homogeneous spherical BIT nanoparticles with a size below the 30 nm. The incorporation of Er ions showed a strong decrease in the lattice parameters, as well as averaged particle size. The photoluminescence up-conversion (excitation wavelength =1480 nm) showed an enhancement of the infrared emission (980 nm) as Er concentration increased, achieving a maximum for 6% mol, while photoluminescence spectra (excitation wavelength =473 nm) showed a strong green emission (529 and 553 nm) with a maximum at 4% mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号