首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexagonal barium ferries is a promising and efficient microwave (MW) absorbing material, but the low dielectric loss and poor conductivity have limited their extensive applications. In this work, a simple tactic of coating conductive polymer PANI on hexaferrite BaCo2Fe16O27 is presented, wherein the dielectric properties are customized, and more significantly, the electromagnetic loss is greatly enhanced. As displayed from structural characterizations, PANI were coated equably on the surface of hexaferrite grains by an in-situ polymerization process. The outcomes exhibit the as-prepared PANI@hexaferrite composite has remarkable electromagnetic wave absorption capacity. When the thickness is 6.0 mm, the minimal RL of ?40.4 dB was achieved at 2.9 GHz. The effective absorption bandwidth (RL < ?20 dB) of 0.65 GHz, 0.53 GHz, 0.65 GHz, 0.52 GHz, 0.46 GHz and 0.39 GHz was achieved separately when the thickness ranges from 4 to 9 mm. The highly efficient MW absorbing performance of PANI@hexaferrite composite were the consequence of multiple loss mechanisms and perfect impedance matching. It is demonstrated that the PANI@hexaferrite composite with excellent MW absorption performance is expected to be potential MW absorbers for extensive applications.  相似文献   

2.
《Ceramics International》2022,48(18):26116-26128
In order to expand the application prospects of SiCN ceramics in the field of microwave (MW) absorption materials, a series of Ni3Si embedded SiCN ceramic fibers composites (NSF) were prepared by controlling Ni conversion rate through the electrospinning technique and polymer derivation, with the intention of improving the impedance matching degree, enhancing the conductivity and polarization, and further promoting the dielectric loss ability and MW absorption performance of ceramic materials. The microstructure, phase composition, conductivity, MW absorption properties and mechanism of the material were analyzed by a variety of characterization methods. The results show that NSF exhibited high dielectric loss efficiency and desirable effective absorption bandwidth (EAB) when the conversion rate of Ni was 0.5 wt%: The MW of the entire Ku band (12–18 GHz, 6 GHz) could be effectively absorbed by the sample with a thickness of 2.64 mm, and its EAB could cover 6–18 GHz by adjusting its thickness from 1 mm to 5 mm, so its performance is significantly superior to a number of similar SiCN based composite ceramic materials previously reported. To sum up, the NSF prepared in this work exhibits suitable impedance matching degree, good conductivity, obvious polarization effect, excellent dielectric loss ability, and gratifying EAB in MW, and it is expected to become a powerful candidate in the field of broadband MW absorption materials in the future.  相似文献   

3.
《Ceramics International》2021,47(21):30448-30458
Morphological configuration plays a vital role in regulating the absorption performance of magnetic materials. Herein, a novel challenge is discussed on electromagnetic loss features of two hard and soft magnetic materials with hierarchical brain-coral like structure and rod-like structure. In this study, pure SrFe12O19 (Sr) as hard magnetic component and CoFe2O4 (Co) as soft magnetic component with two distinct morphologies were successfully synthesized by facile hydrothermal and solvothermal methods. In the first approach, electromagnetic loss features of rod and brain-coral-like particles were investigated, and in second approach -according to the obtained results-microwave absorption performance of a mixture of hard/soft magnetic components with hierarchical structure were evaluated. The minimal reflection loss (RL) for brain-coral-like particles of individual Sr and Co samples were −17.6 dB (at 18.8 GHz with 9 mm thickness) and −31.2 dB (at 8.1 GHz with 10 mm thickness), respectively, which show far better performance than rod-like structure. Remarkably, the composite of Sr and Co micro-particles with hierarchical structure exhibited strong RL value of −38 dB with 2.6 GHz effective absorption bandwidth at the thickness of 2.5 mm, with a filling ratio of 40 wt%. According to the results, it is founded that the electromagnetic loss features are crucially boosted via hierarchical configuration of magnetic materials. Increment in complex permittivity and permeability, accounting for the formation of cross-linked networks in the hierarchical structure, promoted the interfacial polarization phenomena with different relaxation times and appearance of multi resonance peaks.  相似文献   

4.
《Ceramics International》2020,46(9):13641-13650
Given the rapid development of electrommunication and radar detection technologies, low frequency electromagnetic wave materials have received more and more attention. Herein, the Apium-derived biochar loaded with MnFe2O4@C has been successfully prepared by using co-solvothermal and calcination method. The cladding carbon layer on MnFe2O4 NPs is migrated from biochar via thermal diffusion, and the biochar is covered with the ferrite NPs as well. Thus, the combination of dielectric and magnetic loss endows the composite with excellent low frequency electromagnetic absorption ability i.e. the optimal microwave absorbing intensity is −48.92  dB at 0.78 GHz with an extended effective absorbing bandwidth of 0.38–1.78 GHz for only 2.5 mm thickness, being ascribed to nature resonance, multiple interfacial and surface polarization, strong electromagnetic attenuation ability and good impedance matching property in detail. This bio-based ferrite composites have great potential in preparation of MAMs due to the advantages of extraordinary performance, lightweight property, environmental protection and easy degradation.  相似文献   

5.
Here in, the effects of FeSiAl particle size on the dielectric and microwave absorption properties of FeSiAl/Al2O3 composites were studied. FeSiAl/Al2O3 composites containing 18–25 μm, 25–48 μm, and 48–75 μm FeSiAl particles were prepared by hot-pressed sintering based on uniformly mixed FeSiAl and Al2O3 powders. Results show that the real permittivity and the imaginary permittivity are significantly promoted with increasing FeSiAl particle size, which is ascribed to the enhanced interfacial polarization and conductance loss. In addition, the favorable matching impedance and suitable attenuation coefficient enabled the composite containing 25–48 μm FeSiAl powder to show a minimum reflection loss of ?34.4 dB at 11.7 GHz and an effective absorption bandwidth (<-10 dB) of 1.4 GHz in 11.0–12.4 GHz, when the thickness is 1.1 mm. By adjusting the thickness to 1.4 mm, the effective absorption bandwidth of the composite reaches a maximum value of 2.0 GHz in the 8.3–10.3 GHz range, indicating tunable, strong, and highly efficient microwave absorption performance.  相似文献   

6.
《Ceramics International》2022,48(16):22896-22905
Spinel ferrites are widely used for electromagnetic wave (EMW) absorption applications. In this study, spinel Ni–Zn ferrites with excellent microwave absorption properties were synthesized. Their EMW absorption characteristics and interaction mechanisms were studied to lay the foundation for the study of the role of Ni–Zn ferrite as a magnetic substrate for composites. Herein, Ni0·5Zn0·5Fe2O4 was prepared by the hydrothermal method (H-NZFO) and the sol–gel auto-combustion method (S-NZFO); both samples exhibited distinct microwave absorption properties. The S-NZFO absorber (thickness = 3.72 mm) demonstrated the best dual-zone microwave absorption with two strong reflection loss peaks at 5.1 and 10.5 GHz. The corresponding effective absorption bandwidth (EAB) reached 9.0 GHz, which covered part of the S-band and all of the C- and X-bands. These results were attributed to the high saturation magnetization, outstanding complex permeability, and multiple magnetic loss channels of S-NZFO. The H-NZFO sample exhibited excellent absorption capability and matching thickness. At a thickness as low as 1.71 mm, the minimum reflection loss (RLmin) of the H-NZFO absorber reached -60.2 dB at 13.1 GHz. The maximum bandwidth corresponding to RL below -10 dB was 4.6 GHz. These results can be attributed to small particle size, high complex permittivity, and multiple dielectric loss channels of H-NZFO. The observed wide effective absorption bandwidth of S-NZFO and strong microwave absorption capability of H-NZFO suggest the potential of both materials as substrates for efficient microwave absorbers in military as well as civilian absorption applications.  相似文献   

7.
《Ceramics International》2022,48(4):4986-4998
In this paper, the mixture of Fe and Ni nanoparticles (abbreviated as FeNi) was added to liquid polysilazane (PSZ) as a magnetic source, to prepare a series of magnetic carbon-rich SiCN-based composite ceramics by adjusting the mass ratio of FeNi through the polymer derivation method. The phase composition, microstructure, conductivity, electromagnetic wave (EMW) absorption performance and mechanism of composite ceramics prepared were discussed. The analysis shows that the introduction of magnetism has adjusted the impedance matching and improved the magnetic loss performance of composite ceramics on the whole, and the dielectric loss ability of composite ceramics has been strengthened benefiting from the formation of conductive path of CNTs precipitated by FeNi catalysis in the matrix. Therefore, the addition of magnetic particles improves the EMW absorption peak intensity and effective absorption bandwidth (EAB) of composite ceramics. When the addition amount of FeNi was 5 wt%, the sample 5# exhibited the best comprehensive EMW absorption performance: Its minimum reflection loss (RLmin) was ?18 dB and the EAB was 2.5 GHz when the thickness was 1 mm, the EAB covering the C, X and Ku bands can be obtained by adjusting the thickness from 1.0 mm to 4.0 mm. Through calculation, the EAB (EABtf) of 5# with a thickness of 1 mm and a filling rate of 1 wt% can reach 50, which is significantly higher than that of a series of SiCN-based composite ceramics previously reported. In addition, the density of 5# was 2.3 g/cm3, and its compressive strength (CS) can reach 337 MPa. The data shows that the composite ceramic 5# prepared in this experiment has the merits of light weight, excellent comprehensive EMW absorption performance and good compression resistance, and is expected to be one of the promising materials in the field of new-generation EMW absorbers.  相似文献   

8.
《Ceramics International》2022,48(17):24877-24887
Environmentally friendly microwave absorbers with superior electromagnetic wave absorption, lightweight and hydrophobic ability have received considerable attention in practical applications. However, addressing the above-mentioned characteristics is simultaneously a tremendous challenge. Along these lines, in this work, a lightweight and efficient hybrid material was fabricated by employing simple self-assembly of core-shell ZnFe2O4@C nanospheres embedded within longan shell-derived honeycomb-like porous carbon. The results display that the carbon skeleton not only improves the conduction loss, but also promotes the reflection and scattering of EM wave. In addition, the core-shell ZnFe2O4@C microspheres are conducive to enhancing the ability of interface polarization and magnetic loss, and further improving the synergistic effect between the dielectric loss and magnetic loss. Furthermore, the unique structure of the ZnFe2O4@C@BPC endows it excellent hydrophobicity and avoids water vapor contamination in practical applications. Precisely, at a thickness of 3.4 mm, the minimum reflection loss (RL) is up to ?58.6 dB at 12.9 GHz. Notably, the effective absorption bandwidth (EAB) is as wide as 9.1 GHz (8.9–18.0 GHz), covering almost the entire X and Ku bands. Consequently, this outstanding performance renders the ZnFe2O4@C@BPC composite quite attractive for a broad range of applications in lightweight, hydrophobic microwave absorption materials.  相似文献   

9.
《Ceramics International》2022,48(1):446-454
Readily oxidization of magnetic particles is a common drawback of these type of materials which reduce their electromagnetic wave dissipation performance. In this study, the magnetic core-double shells structured (Ni/SiO2/Polyaniline) composite has been developed for protection of the core from oxidation and in consequent improvement the complex permittivity. Solvothermal and in-situ polymerization methods were utilized for decorating Ni micro-particles with SiO2 and conductive polyaniline polymer respectively. All physico-chemical, magnetic and electromagnetic features were evaluated via XRD, FTIR, XPS, FESEM, VSM and VNA analysis. The double shells composite possesses significant performance in terms of reflection loss and effective absorption bandwidth. The results reveal that the maximum dissipation capacity of the double shells composite is – 32.5 dB at 16.5 GHz with 4.5 GHz effective absorption bandwidth and 1.5 mm thickness. Enhancement in microwave dissipation features are arises from synergistic influence of various phenomena such as interfacial polarization, multiple Debye relaxation, natural ferromagnetic resonance and proper impedance matching characteristic. Overall, developing double shells structure on magnetic Ni microsphere particles had a meaningful effect on tuning the microwave absorption performance.  相似文献   

10.
《Ceramics International》2020,46(9):12996-13002
In order to enhance the microwave absorption properties of SiC nanowires, two transition metals Ni and Mn were selected as doping elements to improve their electromagnetic parameters. The experimental results indicate that Ni and Mn as catalysts reduce the stacking defect density of SiC nanowires, which will weaken the interfacial polarization loss induced by stacking defects. However, they can increase the electrical conductivity of SiC nanowires and generate new impurity defects, thereby effectively improving the conductance loss and dipole polarization loss. Therefore, the dielectric loss of SiC nanowires is significantly enhanced, but they still do not have considerable magnetic loss capability. In addition, Ni and Mn doping also improves the impedance matching characteristics of SiC nanowires. Therefore, the microwave absorption ability of SiC nanowires is effectively enhanced. As the nanowire filling ratio is 20 wt%, the minimum reflection loss of the Ni0.01Si0.99C nanowire is −11.1 dB and the effective absorption bandwidth is 1.1 GHz (9.3–12.4 GHz) at a thickness of 2.8 mm; Mn0.01Si0.99C nanowires have a minimum reflection loss of −16.8 dB and an effective absorption bandwidth of 3.1 GHz (9.3–12.4 GHz) at a thickness of 2.8 mm.  相似文献   

11.
《Ceramics International》2022,48(4):5217-5228
In order to overcome the problems caused by electromagnetic pollution, the design and development of high-performance microwave absorbers is urgently required. In this work, a hierarchical ZnFe2O4@MnO2@RGO composite was successfully fabricated via a facile and rapid hydrothermal method. Its unique core-shell structure and synergistic effect between multiple components are beneficial for electromagnetic wave absorption. The morphology, elemental composition, microstructure and microwave absorption characteristics were systematically studied. With a filler loading of 20 wt%, the composite presents a minimum reflection loss (RLmin) of ?46.7 dB and an effective absorption bandwidth (EAB) as wide as 5.2 GHz at a thickness of 2.5 mm. The superior absorption ability profits from a special microstructure, good impedance matching, multiple attenuation features, interfacial polarization, and the synergistic effect of dielectric and magnetic loss. Consequently, this work lays a foundation for the design of high-performance electromagnetic wave absorbers with multicomponent heterogeneous structures.  相似文献   

12.
《Ceramics International》2022,48(15):21268-21282
Mullite-Al2O3-SiC composites were in-situ synthesized through carbothermal reduction reaction of fly ash (FA) with a high alumina content and activated carbon (AC). The effects of sintering temperature, holding time, and amount of AC on the β-SiC yield, microstructure, dielectric properties, and electromagnetic (EM) absorption performance of the composites in the 2–18 GHz frequency range were studied. The results show that increasing the AC improves the porosities of the composites, with the highest porosity of 56.17% observed. The β-SiC yield varies considerably as the sintering parameters were altered, with a maximum yield of 23% achieved under conditions of 12 wt% AC, 1400 °C sintering temperature, and 3 h holding time. With a thickness of 3.5 mm, this composite has excellent EM absorption performance, exhibiting a minimum reflection loss (RLmin) of -51.55 dB at 7.60 GHz. Significantly, the maximum effective absorption bandwidth (EAB) reaches 3.39 GHz when the thickness is 3.0 mm. These results demonstrate that the composite prepared under ideal conditions can absorb 99.99% of the waves passing through it. Because of the interfacial polarization, conductive loss, and impedance matching of the heterostructure, the synthesized mullite-Al2O3-SiC composites with densities ranging from 1.43 g/cm3 to 1.62 g/cm3 demonstrate outstanding EM attenuation capabilities. Therefore, this study presents a remarkable way of utilizing fly ash to fabricate inexpensive, functional ceramic materials for EM absorption applications.  相似文献   

13.
In this paper, Co2Si(Co)/SiCN composite ceramics were synthesized by simple precursor-derived ceramics method. The phase composition, morphology, and microwave absorption properties of Co2Si(Co)/SiCN composite ceramics at different pyrolysis temperatures (1000–1400°C) were studied. When pyrolysis temperature was 1300°C, carbon nanowires (CNWs), Co2Si, Si2N2O, SiC and Si3N4 were in situ generated and the best electromagnetic wave (EMW) absorption performance was obtained. The minimum reflection loss reached−50.04 dB at 4.81 mm, and the effective absorption bandwidth broadened to 3.48 GHz (14.52–18 GHz) at 1.31 mm. The excellent EMW absorption performance mainly comes from the coexistence of multiple loss mechanisms, including the magnetic loss of Co2Si, the conduction loss of CNWs, and the heterogeneous interfaces polarization between varieties of nanocrystals and amorphous ceramic matrix. By adjusting the sample thickness from 1 to 5 mm, the effective absorption of S1300 can cover the entire X and Ku bands, from 3.36 to 18 GHz. This study provides a simple way to synthesize high performance ceramic-based microwave absorbing materials.  相似文献   

14.
《Ceramics International》2023,49(8):12240-12250
A careful approach to the optimization of magnetic and dielectric losses in nanomaterials can improve the electromagnetic wave absorption loss performance for certain microwave absorption applications. In this study we prepared dual core (Fe/TiCN) coated with nitrogen (N) doped carbon shell nanocomposite by arc-discharge method under mix atmospheres of working gases and with varying elemental compositions. Among all nanocomposites, (Fe/TiC0.7N0.3)@N–C dual-core@ N- doped shell nanocomposite exhibits enhanced microwave absorption. Owing to the novel dual-core@ N-doped shell structure and numerous defects induced by doping N in carbon shells, an improved dielectric relaxation in composite is observed and the minimum reflection loss was reached −44.36 dB at 5.3 GHz for 4.8 mm thickness.  相似文献   

15.
《Ceramics International》2023,49(3):4713-4721
The electromagnetic pollution problem, particularly at microwave frequencies, poses a threat to not only sensitive technological gadgets but also to the health of humans. Therefore, there is a great need for lightweight and highly effective microwave-absorbing materials (MAMs). Here, we fabricated a hierarchical flower-like MoSe2 structure and a rod-like MnFe2O4@MnO2 architecture via a solvothermal method. Single-layer and bilayer samples were fabricated to study the microwave absorption feature. In single-layer samples, the flower-like MoSe2 structure has better microwave absorption properties than the rod-like MnFe2O4@MnO2 architecture. And in bilayer absorbing samples, a sample with a flower-like MoSe2 structure as the top layer shows high absorption performance. Moreover, in bilayer samples, changes were made to the thickness of both layers to find the best parameters. An optimal bilayer sample has been achieved with a flower-like dielectric MoSe2 structure as a top layer having a 1 mm thickness and magnetic MnFe2O4@MnO2 as a bottom layer also with a 1 mm thickness; indicating that a strong absorption can only be attained by balancing dielectric loss and magnetic loss. Moreover, the optimal sample shows decent absorption with an effective absorption bandwidth (EAB) of 5.4 GHz (14.7–9.3 GHz) with a 1 mm thickness of each layer. The simulated results of the optimal sample have also been compared with experimental results. These results suggest a different approach for developing MAMs in the future.  相似文献   

16.
In this study, ternary MWCNTs/CoFe2O4/FeCo nanocomposite coated with conductive PEDOT-polyaniline (PA@MW/F/C) co-polymers were synthesized by microwave-assisted sol-gel followed in-situ polymerization methods. The phases, crystal structures, morphologies, magnetic and electromagnetic features of the as-prepared samples were identified via XRD, SEM, XPS, VSM, and VNA respectively. Absorption characteristics were investigated in the frequency (12–18 GHz) Ku band. XRD, VSM and SEM analysis confirmed the partial reduction process of CoFe2O4 and successfully decorated magneto-dielectric particles with co-polymers. By measuring electromagnetic features of the samples, it was found that coating magneto-dielectric particles with conductive co-polymers improved the permittivity and dielectric constant, accordingly affecting the impedance matching characteristic and attenuation constant performance. Moreover, exchange coupling behavior was found significant impacts on the microwave absorption properties. PA@MW/F/C coated nanocomposite revealed the maximum reflection loss of ?90 dB at 13.8 GHz with 4 GHz effective bandwidth and 1.5 mm thickness. Due to the enhanced interfacial polarization, impedance matching and exchange coupling effects of the as-prepared nanocomposite, it owns excellent microwave absorption properties, which can be applied as an absorber with distinguishing features (strong absorption, thin thickness, and broadest effective bandwidth).  相似文献   

17.
《Ceramics International》2023,49(15):24744-24751
The research and development of dielectric microwave absorbing materials with broad electromagnetic (EM) response is a significant project in EM wave absorption field. To achieve high-performance absorption and strong interfacial bonding at the same time, thermal-assisted in-situ bonding technology was applied to fabricating the dielectric composite absorbing materials. Thanks to the combination of vacuum filtration and in-situ hydrothermal reaction, the as-prepared binary composite aerogel shows both strong interface contacting and good mechanical stability. In addition, the carbon nanofibers/silica composite aerogel (CSA) exhibits ultra-broad effective bandwidth covering from S to Ku band, originated from the uniform dispersed silica aerogel in conductive carbon fiber network. In details, for CSA1 sample, the maximum reflection loss (RL) values and effective absorption bandwidth reach −46.2 dB (1.8 mm) and 5.2 GHz (1.5 mm). Meanwhile, the optimum RCS reduction values reaches 16.2 dB m2 when the detection theta was set as 0°. For CSA2 sample, the effective absorption bandwidth reaches 8.64 GHz at 1.5 mm, and tends to possess lower frequency EM response covering the S-band. This work exhibits a kind of broad-bandwidth aerogel absorbers at low thickness, which shows huge potential in large-scale production of microwave absorbing devices.  相似文献   

18.
Magnetic/dielectric composites can offer good electromagnetic impendence. However, the strategy for embodying strong absorbing ability and broad effective absorption band simultaneously is a significant challenge. Therefore, assembled porous Fe3O4@g-C3N4 hybrid nanocomposites have been designed and synthesized, in which porous Fe3O4 nanospheres assembled by ~ 3?nm Fe3O4 nanoparticles are surrounded by g-C3N4. The introduction of g-C3N4 improves dielectric loss ability at 2–18?GHz and magnetic loss ability at 2–10?GHz, and enhances attenuation constant, and increases electromagnetic impedance degree. These merits ensure that assembled porous Fe3O4/g-C3N4 hybrid nanocomposites deliver superior microwave absorption performance, such as effective absorption bandwidth, fE, (reflection loss less ??10?dB) exceeding 5?GHz at 2.0–2.3?mm, the maximal fE of 5.76?GHz and minimal reflection loss of at least ??20?dB with thickness ranging from 2.3 to 10.0?mm, avoiding the sensitivity of absorption properties to absorbing layer thickness. Stable microwave absorbing performance originates from multi-interfacial polarization, multi-reflection, enhanced electromagnetic loss capability, and good electromagnetic impedance. Our study offers a new idea for stable microwave absorber at 2–18?GHz.  相似文献   

19.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers.  相似文献   

20.
《Ceramics International》2022,48(17):24915-24924
Rare earth elements can modulate the dielectric constant of materials and significantly improve their dielectric properties. Herein, SiCnws/SiC ceramics were prepared through polymer derived ceramics (PDCs) technology with rare earth Sc particles as the catalyst. The Sc particles promote the precipitation of SiC and C from the matrix. Furthermore, the SiCnws, grown via the vapour-liquid-solid (VLS) mechanism, construct the three dimensional (3D) network structure to improve impedance matching and loss characteristics. Remarkably, the SiCnws/SiC ceramics minimum reflection coefficient (RCmin) achieved a value of ?33.2 dB at 9.4 GHz with a thickness of 2.75 mm, and the effective absorption bandwidth (EAB) was 4.2 GHz covering the whole X band. When microwaves permeated into the SiCnws/SiC ceramics, those trapped in the 3D network structure underwent a variety of microwave energy dissipation processes, including multiple reflections, scattering, and interface and dipole polarisation. Consequently, SiCnws-reinforced PDC-SiC ceramics catalysed by rare earth emerge as a promising new approach to enhance electromagnetic (EM) wave absorption performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号