首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The plasmonic effects of infiltrated silver (Ag) nanoparticles, with different contents, inside a nanostructured TiO2 film on the photovoltaic performance of dye‐sensitized solar cells (DSSCs) are explored. The synthesized Ag nanoparticles are immobilized onto deposited TiO2 nanoparticles by a new strategy using 3‐mercaptopropionic acid (MPA), a bifunctional linker molecule. Transmission electron microscope (TEM) images show that monodispersed Ag and polydispersed TiO2 nanoparticles have an average diameter of 12 ± 3 nm and 5 ± 1 nm, respectively. Moreover, Fourier transform infrared spectroscopy (FTIR) analysis reveals that Ag nanoparticles were successfully functionalized and capped with MPA. Optical studies on the MPA‐capped Ag nanoparticles inside TiO2 film show an increase in the total absorbance of the electrode. Moreover, EIS measurements confirm that MPA‐capped Ag nanoparticles inhibit the charge recombination and improve the stability of nanoparticles in I3?/I? electrolyte. The DSSC assembled with optimal content of MPA‐capped Ag nanoparticles demonstrated an enhanced power conversion efficiency (8.82% ± 0.07%) compared with the pure TiO2 (7.30% ± 0.05%). The increase in cell efficiency was attributed to the enhanced dye light absorption in strength and spectral range due to the surface plasmon resonance of MPA‐capped Ag nanoparticles in the photoanode.  相似文献   

2.
Negative-charged polystyrene (PS) microspheres were prepared through a soap-free emulsion polymerization method using potassium persulfate as initiator. Three-dimensionally ordered macroporous TiO2 films were fabricated using the high-quality PS colloidal crystals templates obtained via a horizontal deposition method. The as-prepared macroporous TiO2 films were applied as the photoanodes in dye-sensitized solar cell (DSSC). The microstructure of the products were characterized by X-ray diffractometer, fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption analyzer. The results showed that the macroporous TiO2 films replicated well the 3D ordered structure derived from PS colloidal crystal templates and revealed a relatively large specific surface area (69.99 m2/g), which could increase the capacity of TiO2 film anode for absorbing dyes and scattering light. The photocurrent–voltage (IV) characteristics of DSSC were measured by a digital source meter under simulated solar light. The results indicated that the introduction of an ordered macroporous TiO2 interfacial layer increased the photovoltaic conversion efficiency, which was improved by 68 % from 3.61 to 6.08 %, as compared to a device using a bare P25 TiO2 photoanode. Our results showed that the hierarchically ordered macroporous TiO2 bilayer films photoanode for DSSC could be helpful to improve the photovoltaic conversion efficiency.  相似文献   

3.
In order to increase of the photocurrent, photovoltage and energy conversion efficiency of dye-sensitized solar cell (DSSC), rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+) is prepared and introduced into the TiO2 film in the DSSC. As a luminescence medium, Lu2O3:(Tm3+, Yb3+) improves incident light harvest via a conversion luminescence process and increases photocurrent; as a p-type dopant, the rare-earth ions elevate the energy level of the oxide film and increase the photovoltage. Under a simulated solar light irradiation of 100 mW cm−2, the light-to-electric energy conversion efficiency of the DSSC with Lu2O3:(Tm3+, Yb3+) doping reaches 6.63%, which is increased by 11.1% compared to the DSSC without Lu2O3:(Tm3+, Yb3+) doping.  相似文献   

4.
Different compositions of TiO2–BaTiO3 nanocomposites are synthesized with various weight ratios for dye‐sensitized solar cell (DSSC) applications. TiO2 and BaTiO3 nanoparticles (NPs) are synthesized by sol‐gel and solvothermal methods, respectively and are employed as the photoanode electrodes. BaTiO3 NPs have pure cubic perovskite crystal structure with an average size of 20‐40 nm, while TiO2 NPs show pure anatase phase with 15‐30 nm size. The power conversion efficiency (PCE) enhancement of the cells is first attained by controlling the thickness of the films for light harvesting improvement. The fabricated DSSC composed of pure BaTiO3 NPs with an optimal thickness of 25 μm shows efficiency of 6.83%, whereas that made of pure TiO2 NPs with 14 μm thickness has cell efficiency of 7.24%. Further improvement of cell efficiency is achieved by preparation of binary oxide nanocomposites using TiO2 and BaTiO3 NPs with various weight ratios. The highest PCE of 9.40% is obtained for the nanocomposite with TiO2:BaTiO3=85:15 (wt%). The enhancement is assigned to less recombination of photo‐generated electrons and higher incident photon to current conversion yield as a result of rapid charge collection and higher dye sensitization.  相似文献   

5.
《Ceramics International》2022,48(12):17328-17334
Multi-element doping is an effective method to suppress the leakage of BiFeO3 (BFO). A systematic study on the effect of various elements (La, Er, Zn, Ti) doping on the leakage performance, mechanism and other electrical properties of BFO films was performed As the kinds of doping elements increases, the leakage current density of the BFO film gradually decreases. The leakage current density is gradually reduced from 5.78 × 10?2 A/cm2 doped with one element (La) to 1.25 × 10?2 A/cm2 doped with two elements (La, Ti), 4.13 × 10?3 A/cm2 doped with three elements (La, Ti, Zn), and 4.53 × 10?4 A/cm2 doped with four elements (La, Er, Zn, Ti). Finally, compared with pure BFO films, the leakage current density in doped BFO films is reduced by two orders of magnitude. Moreover, the conduction mechanism in doped BFO films is gradually changed from space charge limited current to ohmic conduction. This work provides an effective method to ameliorate the leakage of ferroelectric materials and lays a foundation for the practical application of BFO-based films.  相似文献   

6.
BACKGROUND: Mercury electrodeless discharge lamps (Hg‐EDLs) were used to generate UV radiation when exposed to a microwave field. EDLs were coated with doped TiO2 in the form of thin films containing transition metal ions Mn+ (M = Fe, Co, Ni, V, Cr, Mn, Zr, Ag). Photocatalytic degradation of mono‐chloroacetic acid (MCAA) to HCl, CO2, and H2O, and decomposition of Rhodamine B on the thin films were investigated in detail. RESULTS: Polycrystalline thin doped TiO2 films were prepared by dip‐coating of EDL via a sol–gel method using titanium n‐butoxide, acetylacetone, and a transition metal acetylacetonate. The films were characterized by Raman spectroscopy, UV/Vis absorption spectroscopy, X‐ray photoelectron spectroscopy (XPS), electron microprobe analysis and by atomic force microscopy (AFM). The photocatalytic activity of doped TiO2 films was monitored in the decomposition of Rhodamine B in water. Compared with the pure TiO2 film, the UV/Vis spectra of V, Zr and Ag‐doped TiO2 showed significant absorption in the visible region, and hence the photocatalytic degradation of MCAA had increased. The best apparent degradation rate constant (0.0125 min?1), which was higher than that on the pure TiO2 film by a factor of 1.7, was obtained with the Ag(3%)/TiO2 photocatalyst. The effect of doping level of vanadium acetylacetonate on the photocatalytic efficiency of the V‐doped TiO2 was determined. CONCLUSIONS: Transition metal ion‐doped TiO2 thin films showed significant absorption in the visible region. The metal doped TiO2 photocatalyst (with an appropriate amount of V, Zr and Ag) on the Hg‐EDLs increased the degradation efficiency of MCAA in a microwave field. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.  相似文献   

8.
Polymer electrolyte membranes based on poly(ethylene oxide) (PEO) doped with TiO2 nanoparticles were synthesized by simple solution cast technique. Mesoporous TiO2 film was prepared by doctor‐blade method. The modified polymer membranes and the mesoporous films were characterized by SEM, TEM, AFM, ionic conductivity, and J‐V measurements. Dye‐sensitized solar cells (DSSC) have been fabricated in which PEO‐polymer electrolyte doped with and without nano‐TiO2 were sandwiched between porous TiO2 and counter electrodes. The DSSC with nano‐TiO2 doped polymer electrolyte shows better performance (1.68%) in comparison with pristine polymer electrolyte (1.07%), which is due to improved ionic conductivity value in polymer electrolyte system by nano‐TiO2 doping. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Dye-sensitized solar cells (DSSC) derived from TiO2 aerogel film electrodes were fabricated. TiO2 aerogels were obtained by using sol–gel method and supercritical carbon dioxide (sc-CO2) drying. First, TiO2 wet gels were obtained by sol-gel method. Then, the solvents in the TiO2 wet gels were replaced by acetone. The TiO2 aerogels were obtained by using sc-CO2 drying from the TiO2 wet gels. The conditions of sc-CO2 drying were at 313, 323 K and 7.8–15.5 MPa. The electrodes with TiO2 aerogel films were obtained by deposition of the aerogels on glass substrates. The electrodes with TiO2 aerogel films and a commercial particle film of various thickness were obtained by repetitive coatings and calcinations. The amount of dye adsorbed on the TiO2 films with sc-CO2 drying was higher than that of commercial particle film. The amount of dye adsorbed on the TiO2 films increased with increasing surface area of the TiO2 film. DSSCs were assembled by using the TiO2 aerogel film electrodes and their current–voltage performance was measured. The power performance of DSSC made by supercritical drying was higher than that of commercial particles. The DSSC with the film electrode made at 313 K and 15.5 MPa showed the best power performance (Jsc = 7.30 mA/cm2, Voc = 772 mV, η = 3.28%).  相似文献   

10.
Electrophoretic deposition (EPD) method is employed to obtain mesoporous TiO2 film on a titanium (Ti) foil; the film is then mechanically compressed and sintered at 350 °C before being subjected to dyeing. A comprehensive study was made on the mechanistic aspects of the EPD process. The dye-sensitized solar cell (DSSC) using the thus formed TiO2 film rendered a power conversion efficiency (Eff.) of 6.5%. Effects of various compression pressures on the photovoltaic parameters and on other characteristic parameters of the pertinent DSSCs are studied. Electrochemical impedance spectroscopy (EIS) is applied for the first time, using a novel equivalent model, to study the impedance behavior of the DSSC with this type of TiO2 film. We also obtain characteristic parameters of the TiO2 photoanode by using EIS. The coordination number of the TiO2 film, and the ratio of charge transfer resistances of electron recombination and electron transport are also obtained and analyzed. Moreover, we employ a multilayer approach and increase the film thickness to prepare TiO2 films with the same coordination number and porosity; DSSCs using such TiO2 films obtained from P90 and P25 rendered efficiencies of 6.5% and 5.24%, respectively. Scanning electron microscopy (SEM) micrographs are obtained to characterize the TiO2 films formed by the EPD technique and laser-induced transient technique is used to estimate the electron lifetime in the TiO2 films.  相似文献   

11.
《Ceramics International》2022,48(8):10428-10437
Anatase TiO2 samples with three different morphologies were successfully prepared by the solvothermal method, and their photoelectric properties were tested. The mixed anatase TiO2 demonstrated the best photoelectrochemical water splitting performance with a photocurrent density of 0.84 mA/cm2 (1.23V vs. reversible hydrogen electrode (RHE)), carrier concentration of 1.29 × 1022 cm-3, and interface resistance of 29.20 Ω. Further, the anatase TiO2 samples with different morphologies were doped with nitrogen ions by electron beam irradiation in order to modify the defect concentration in these samples. Among them, the photocurrent density of mixed anatase TiO2 irradiated by 100 kGy obtained the highest current density at 0.99 mA/cm2 (1.23 V vs. RHE). Moreover, its carrier concentration reached 2.46 × 1022 cm-3 and interface resistance was reduced to 11.24 Ω. The photocatalytic properties of TiO2 with different morphologies and the effects of irradiation and nitrogen doping on the properties of the samples were investigated.  相似文献   

12.
Polyvinyl pyrrolidone (PVP) is introduced to low temperature preparation of a good quality TiO2 film used in flexible dye-sensitized solar cells (DSSCs). The samples are characterized by scanning electron microscopy and UV–vis absorption spectra, the photovoltaic performance of the DSSC is measured. It is found that PVP can improve the dispersion of TiO2 particles and the adherence of TiO2 particles to flexible substrate, as well as the adsorption of sensitized dye to TiO2 film. Additionally, ultraviolet light irradiation can eliminate organics remained on the surface the TiO2 film and improve the surface state of TiO2 film. Under an optimal condition, a flexible DSSC using TiO2 film doped PVP and UV irradiation treated achieves a light-to-electric energy conversion efficiency of 3.02% under irradiation with a simulate solar light intensity of 100 mW cm−2.  相似文献   

13.
Mesoporous TiO2 microspheres were successfully synthesized by a facile hydrothermal process and the obtained product was sintered at 450 °C. The sintered TiO2 powder was characterised by powder X-ray diffraction pattern and the result shows pure anatase phase with good crystalline nature. The morphological image of field emission scanning electron microscopy and high resolution transmission electron microscopy shows spherical shape and size of the particles is around 100 to 300 nm. The Brunauer–Emmett–Teller surface area of synthesized TiO2 material was 56.32 m2 g?1 and average pore width of synthesized materials was 7.1 and 9.3 nm. Bimodal pore structure of TiO2 microspheres has been very effective for electrolyte diffusion into photoanode in dye sensitized solar cells. The synthesized anatase TiO2 microsphere based dye sensitized solar cells have high surface area with light scattering effect to enhance the photocurrent and conversion efficiency than the commercial P25 photoanode material. The power conversion efficiency of synthesized mesoporous TiO2 microspheres and commercial P25 material is 4.2 and 2.7 % respectively. Therefore bimodal mesoporous anatase TiO2 microsphere appears to be a promising and potential candidate for dye sensitized solar cells (DSSC) application.  相似文献   

14.
《Ceramics International》2016,42(12):14071-14076
We modified the refractive index (n) of TiO2 by annealing at various temperatures to obtain a high figure of merit (FOM) for TiO2/Ag/TiO2 (45 nm/17 nm/45 nm) multilayer films deposited on glass substrates. Unlike the as-deposited and 300 °C-annealed TiO2 films, the 600 °C-annealed sample was crystallized in the anatase phase. The as-deposited TiO2/Ag/as-deposited TiO2 multilayer film exhibited a transmittance of 94.6% at 550 nm, whereas that of the as-deposited TiO2/Ag/600 °C-annealed TiO2 (lower) multilayer film was 96.6%. At 550 nm, n increased from 2.293 to 2.336 with increasing temperature. The carrier concentration, mobility, and sheet resistance varied with increasing annealing temperature. The samples exhibited smooth surfaces with a root-mean-square roughness of 0.37–1.09 nm. The 600 °C-annealed multilayer yielded the highest Haacke's FOM of 193.9×10−3 Ω−1.  相似文献   

15.
Molybdenum doped TiO2 (MTO) thin films were prepared by radio frequency (RF) magnetron sputtering at room temperature and followed by a heat treatment in a reductive atmosphere containing 90% N2 and 10% H2. XRD and FESEM were employed to evaluate the microstructure of the MTO films, revealing that the addition of molybdenum enhances the crystallization and increases the grain size of TiO2 films. The optimal electrical properties of the MTO films were obtained with 3 wt% Mo doping, producing a resistivity of 1.1×10?3 Ω cm, a carrier density of 9.7×1020 cm?3 and a mobility of 5.9 cm2/Vs. The refractive index and extinction coefficient of MTO films were also measured as a function of film porosity. The optical band gap of the MTO films ranged from 3.28 to 3.36 eV, which is greater than that of the un-doped TiO2 film. This blue shift of approximately 0.14 eV was attributed to the Burstein–Moss effect.  相似文献   

16.
《Ceramics International》2016,42(12):13432-13441
The current study explored the influence of Mn substitution on the electrical and magnetic properties of BiFeO3 (BFO) thin films synthesized using low cost chemical solution deposition technique. X-ray diffraction analysis revealed that pure rhombohedral phase of BiFeO3 was transformed to the tetragonal structure with P4mm symmetry on Mn substitution. A leakage current density of 5.7×10−4 A/cm2 which is about two orders of magnitude lower than pure BFO was observed in 3% Mn doped BFO thin film at an external electric field >400 kV/cm. A well saturated (p-E) loops with saturation polarization (Psat) and remanent polarization (2Pr) as high as 60.34 µC/cm2 and 25.06 µC/cm2 were observed in 10% Mn substituted BFO thin films. An escalation in dielectric tunability (nr), figure of merit (K) and quality factor (Q) were observed in suitable Mn doped BFO thin films. The magnetic measurement revealed that Mn substituted BFO thin films showed a large saturation magnetization compared to pure BFO thin film. The highest saturation ~31 emu/cc was observed for 3% Mn substituted BFO thin films.  相似文献   

17.
In this study, dye-sensitized solar cells (DSSCs) were fabricated using nanocrystalline titanium dioxide (TiO2) nanoparticles as photoanode. Photoanode thin films were prepared by doctor blading method with 420 kg/cm2 of mechanical compression process and heat treatment in the air at 500°C for 30 min. The optimal thickness of the TiO2 NP photoanode is 26.6 μm with an efficiency of 9.01% under AM 1.5G illumination at 100 mW/cm2. The efficiency is around two times higher than that of conventional DSSCs with an uncompressed photoanode. The open-circuit voltage of DSSCs decreases as the thickness increases. One DSSC (sample D) has the highest conversion efficiency while it has the maximum short-circuit current density. The results indicate that the short-circuit current density is a compromise between two conflict factors: enlargement of the surface area by increasing photoanode thickness and extension of the electron diffusion length to the electrode as the thickness increases.  相似文献   

18.
《Ceramics International》2021,47(20):28557-28565
To reduce the energy consumption of cooling in the hot summer days, searching for novel NIR shielding materials for buildings is of great value. In this report, monodispersed F doped TiO2 nanocrystals with an average size of 8.6 nm were synthesized as novel solar shielding materials for energy-saving windows. All the products adopted an anatase TiO2 structure. After doping of F ions, the morphology of TiO2 was transformed from an irregular shape to a pseudospherical shape. The Raman shift and XPS depth analysis confirmed the successful doping of F ions into the lattice oxygen sites in the TiO2 structure. The introduction of F ions generated free electrons and bulk Ti3+ in TiO2 crystals, which activated a localized surface plasmon resonance (LSPR) absorption in the NIR region. Correspondingly, the NIR shielding performance of the TiO2 films improved with increasing F doping amounts. The NIR shielding value of the films increased from 1.3% to 43.2% when the molar ratio of F to Ti increased from 0 to 0.3. The reason can be attributed to the enhanced NIR absorption induced by the increased electron concentration after doping of fluorine ions. The F–TiO2 films showed superior visible transmittance (90.1–96.7%). Moreover, the F–TiO2 films lowered the indoor temperature of the heat box by 5.3 °C in the thermal tests. Overall, the prepared F–TiO2 nanocrystals show a great potential to be used for energy-saving windows.  相似文献   

19.
《Ceramics International》2017,43(11):8391-8395
Titanium dioxide (TiO2) films doped with different indium (In) concentrations have been prepared on SrTiO3 (STO) substrates by high vacuum metalorganic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) analyses revealed the TiO2 films doped with low In concentrations to be [001] oriented anatase phase and the films with high In concentrations to present polycrystalline structures. The 1.8% In-doped TiO2 film exhibited the best electrical conductivity properties with the lowest resistivity of 8.68×10−2 Ω cm, a Hall mobility of 10.9 cm2 V−1 s−1 and a carrier concentration of 6.5×1018 cm−3. The films showed excellent transparency with average transmittances of over 85% in the visible range.  相似文献   

20.
《Ceramics International》2017,43(13):9759-9768
Fabrication of highly conductive and transparent TiO2/Ag/TiO2 (referred hereafter as TAT) multilayer films with nitrogen implantation is reported. In the present work, TAT films were fabricated with a total thickness of 100 nm by sputtering on glass substrates at room temperature. The as-deposited films were implanted with 40 keV N ions for different fluences (1×1014, 5×1014, 1×1015, 5×1015 and 1×1016 ions/cm2). The objective of this study was to investigate the effect of N+ implantation on the optical and electrical properties of TAT multilayer films. X-ray diffraction of TAT films shows an amorphous TiO2 film with a crystalline peak assigned to Ag (111) diffraction plane. The surface morphology studied by atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) revealed smooth and uniform top layer of the sandwich structure. The surface roughness of pristine film was 1.7 nm which increases to 2.34 nm on implantation for 1×1014 ions/cm2 fluence. Beyond this fluence, the roughness decreases. The oxide/metal/oxide structure exhibits an average transmittance ~80% for pristine and ~70% for the implanted film at fluence of 1×1016 ions/cm2 in the visible region. The electrical resistivity of the pristine sample was obtained as 2.04×10−4 Ω cm which is minimized to 9.62×10−5 Ω cm at highest fluence. Sheet resistance of TAT films decreased from 20.4 to 9.62 Ω/□ with an increase in fluence. Electrical and optical parameters such as carrier concentration, carrier mobility, absorption coefficient, band gap, refractive index and extinction coefficient have been calculated for the pristine and implanted films to assess the performance of films. The TAT multilayer film with fluence of 1×1016 ions/cm2 showed maximum Haacke figure of merit (FOM) of 5.7×10−3 Ω−1. X-ray photoelectron spectroscopy (XPS) analysis of N 1s and Ti 2p spectra revealed that substitutional implantation of nitrogen into the TiO2 lattice added new electronic states just above the valence band which is responsible for the narrowing of band gap resulting in the enhancement in electrical conductivity. This study reports that fabrication of multilayer transparent conducting electrode with nitrogen implantation that exhibits superior electrical and optical properties and hence can be an alternative to indium tin oxide (ITO) for futuristic TCE applications in optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号