首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doping transition metal elements in a crystal causes distortion and defects in the lattice structure, which change the electronic structure and magnetic moment, thereby adjusting the electrical conductivity and electromagnetic properties of the material. Fe-doped Sc2Si2O7 ceramics were synthesized using the sol-gel method for application to microwave absorption. The effect of Fe-doped content on the electromagnetic (EM) and microwave absorption properties was investigated in the Ku-band (12.4–18 GHz). As expected, the dielectric and magnetic properties improve substantially with increasing Fe content. Fe doping causes defects and impurity levels, which enhance polarization loss and conductance loss, respectively. Fe replaces Sc atoms in the ScO6 octahedral structure, creating a difference in spin magnetic moments, which increases the magnetic moment. Moreover, the magnetic coupling of Fe and O atoms occurs at the Fermi level, which benefits magnetic loss. In particular, when the Fe content is 6%, the fabricated Fe-doped Sc2Si2O7 ceramics show an absorption property with absorption peaks located at 14.5 GHz and a minimum reflection loss (RLmin) of ?12.8 dB. Therefore, Fe-doped Sc2Si2O7 ceramics with anti-oxidation and good microwave absorption performance have a greater potential for application in high-temperature and water-vapor environments.  相似文献   

2.
《Ceramics International》2023,49(2):2224-2235
The fast development in the compact and wearable opto-electronics devices need a high-performance electromagnetic (EM) shielding materials that are shows a unique feature like lightweight and flexible in characteristics that increase the problems of electromagnetic pollution. At present technological aspects, the absorption predominant microwave shielding materials are gain the huge demand for preventing the major problems of electromagnetic interference over the modern electronic devices as well as environment. In the report we presents synthesis of multifunctional composite thin film material that adequately includes the exceptional EMI shielding, mechanical flexibility and magnetic properties of composite thin film for portable and wearable electronic devices which could be operated at GHz frequencies. The Co0.5Ni0.5CexSmyFe2-x-yO4 (denoted as CNCSF) its scanning electron microscopy (SEM) micrographs revel the fact that the samples highly agglomerated characteristics features of the prepared thin film samples, this agglomerated structure of the composite film will enhance the EMI shielding performances and strain sensing responses. Further, the prepared thin films were subjected to characterized XRD and Raman spectroscopic techniques to analyse the crystallinity and different functional groups present in the prepared thin films. By doping of samarium and cesium nanoparticles into the Co0.5Ni0.5Fe2-x-yO4 forms the superior conducting islands and enhances the dielectric and magnetic properties of the composite thin films. Owing to the improved dielectric and magnetic properties this x,y = 0.02 ferrites based thin film nanocomposite with the 0.4 mm thickness exhibit the absorption predominated outstanding electromagnetic shielding responses in the order of ?23 dB which is almost equal to 99.67% of shielding efficiency in broad band microwave frequencies. Furthermore, these material-based nanocomposite shields show exceptional stability in EMI shielding efficiency under the different mechanical stretching strains. In addition to superior excellent shielding material, this material-based nanocomposite thin film shows an exceptional strain sensing behaviour, which evident that multifunctional applications of this ferrites based thin material. Owing to the all-unique properties like light weight, flexibility, outstanding EMI-SE and excellent strain sensing behaviour, these ferrites-based material thin film could be employed in flexible and fortable electronic devices as crafty jacket on shield.  相似文献   

3.
Carbon nanotube films (BPs) as EMI shielding materials can be applied in electronic and communication devices due to their high electrical conductivity. Sandwich structures can offer excellent shielding effectiveness by introducing a wave-transmitting layer between conductive films. However, the optimization of the structure demands a deep investigation and plays a crucial role in the final shielding properties of the composites. In this work, BPs are incorporated into epoxy substrates with variable thicknesses (1–6 mm) to fabricate epoxy/BP sandwich structures. The morphology of the CNT films is analyzed by SEM, and the electrical conductivity of all prepared samples is measured by 4-point method. The electromagnetic tests are carried out in the X-band (8.2–12.4 GHz) through the scattering parameters. SEM images reveal a porous structure without visible agglomeration. The electrical conductivity of the BP reaches up to 996 S/m, whereas the values for epoxy/BP composites varies in the range of 8.51–3.13 S/m (1 to 3 mm). BP total shielding efficiency (SET) is approximately 14 dB along the X-band spectrum, with similar contributions of reflection and absorption losses. While, the composites show mainly absorbing behavior, especially in the thicker samples, with more significant SET values (23.4 dB–6 mm).  相似文献   

4.
《Ceramics International》2023,49(7):10702-10713
Civilization can be shielded from the dangerous electromagnetic spectrum by using microwave absorption materials, however, absorbing electromagnetic radiation with thin thickness and high bandwidth remains a challenge, especially at scales that are significant. Herein, we propose a novel architecture where worm-like Cu2S particles are decorating CuCo2S4 micro-spheres were decorated, and this method is thought to be a successful one for enhancing the created nanocomposite's ability to dissipate electromagnetic radiation. Changing the filler loading percentage allows the nanohybrids' electromagnetic characteristics and microwave dissipation effectiveness to be efficiently changed. This leads to the creation of ultra-bandwidth absorbers with thin thickness, which are then tested using waveguide and free-space techniques. The sample with a thickness of 1.4 mm has a maximum reflection loss of ?18 dB and a maximum bandwidth of 3.6 GHz. The hetero-structures, multi-interfaces, and multiple relaxations phenomena, as well as the combined effects of the two components, are credited with the superior microwave absorption performance compared with the state-of-the-art. This finding demonstrates that CuCo2S4/Cu2S nanohybrids pave the way for the development of future high-performance microwave absorption materials.  相似文献   

5.
《Ceramics International》2020,46(17):27352-27361
Lightweight, broadband microwave absorbing materials, with strong absorption capacities, are an urgent demand for practical applications. The microstructural and microwave absorption properties of LaFeO3 samples prepared by a sol-gel method using different amounts of Sr are investigated systematically. X-ray diffraction and Rietveld refinement studies showed that Sr2+ doping can distort the crystal structure of LaFeO3, leading to lattice expansion and spin tilt of the Fe-O-Fe bond angle. The improvement of magnetic properties mainly originates from the synergistic effect of the bond angle spin tilt and crystal structure defects. Oxygen vacancies will be generated due to the fluctuations in the valence state of Fe3+ resulting from the substitution of La3+ by Sr2+ as deduced from the X-ray photoelectron spectroscopy analysis. The generation of oxygen vacancies, electronic hopping and polarization loss may be one of the main reasons for changes in the electromagnetic parameters. The minimum reflection loss (RL) of La1–xSrxFeO3 nanoparticles with the Sr doping of 0.2 can reach approximately -39.3 dB at 10 GHz for the thickness of 2.2 mm, and the effective absorption bandwidth (RL ≤ -10 dB) can reach approximately 2.56 GHz. In addition, the La1–xSrxFeO3 nanoparticles also can obtain better microwave absorbing performance in the C-band (4–8 GHz) with the minimum RL of -36.8 dB for the matching thickness of 3.0 mm and Sr content of 0.3. Consequently, La1–xSrxFeO3 nanoparticles are promising materials for use in a high-performance and adjustable electromagnetic wave absorber, particularly in C-band and X-band.  相似文献   

6.
《Ceramics International》2023,49(5):8071-8080
The current study describes the fabrication of a bilayer microwave absorber made of magnetic Sr2FeReO6 (SRO) powder and a magnetoelectric nanocomposite formed of rod-like magnetic Sr2FeReO6 powder wrapped in polygonal SnS2 powder (SRSS), which was then annealed and analyzed. The analysis of phase constituents, as well as morphological and magnetic measurements, revealed that rod and polygonal particles with soft magnetic properties were successfully synthesized. Additionally, our findings showed that 30:70 wt ratio nanocomposite powders were unable to exhibit broad X-band frequency absorption capabilities. Due to the bi-layer absorber's rational design, the reflection loss was found to be increased and reached -33 dB at 10.3 GHz by covering practically the whole X-band frequency with only 2.5 mm of thickness. The prepared absorber's optimum design included SRSS nanocomposite powder as an absorbing layer with a 1.5 mm thickness and SnS2 powder as a matching layer. The exceptional electromagnetic wave dissipation performance of bi-layer samples compared to single-layer absorber samples may be the result of multiple interfaces being formed as a result of controlling component morphology and composition as well as the absorber's design, which enhanced critical absorbing factors like various polarization phenomena and relaxation losses. The research presented here suggests a simple method for enhancing microwave dissipation performance with a broad absorption band based on the development of heterojunction structures and the integration of various loss processes.  相似文献   

7.
In this study, we investigate the effects of both gamma irradiation and the addition of lanthanum oxide (La2O3) on the Bi1.85Pb0.35Sr2Ca2Cu3Oy (Bi-2223) bulk superconductors. Pure and lanthanum-added samples prepared by the solid-state reaction method were analyzed before and after gamma irradiation using various methods such as X-ray powder diffraction (XRD), the temperature dependence of resistivity under magnetic field (ρ-T). Bi-2223 + x La2O3 samples with x = 0.0, 1.0 and 5.0 wt% were fabricated. The synthesized samples were then subjected to gamma irradiation at different intensities, and the effects of radiation on the structural, electrical, and magnetic properties of the materials were examined. For this purpose, Bi-2223 superconductors in the form of discs were produced and cut into two pieces. One piece was exposed to gamma radiation under high vacuum conditions. The phase analyzes of the materials were carried out by XRD. Then, electrical analysis of the materials was made by measuring resistance under a magnetic field.  相似文献   

8.
Masoumeh Bayat 《Polymer》2011,52(7):1645-1653
In order to develop multifunctional nanofibers, the electrical conductivity and magnetic properties of Fe3O4/carbon composite nanofibers have been examined. Polyacrylonitrile (PAN) is used as a matrix to produce magnetic composite nanofibers containing different amounts of magnetite (Fe3O4) nanoparticles. Electrospun composite nanofibers were thermally treated to produce electrically conductive and magnetically permeable composite carbon nanofibers. The composite nanofibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Raman spectroscopy, four-point probe and Superconducting Quantum Interference Device (SQUID). Uniform nanofibers were obtained with successful transferring of magnetic properties of Fe3O4 into the as-spun composite nanofibers. The electromagnetic properties were tuned by adjusting the amount of Fe3O4 in the matrix and carbonization process. The electrical conductivity, magnetic moment and also magnetic hysteresis rise up by adding Fe3O4 and increasing carbonization temperature. The high surface area provided by the ultrafine fibrous structures, the flexibility and tuneable electromagnetic properties are expected to enable the expansion of the design options for a wide rage of electronic devices.  相似文献   

9.
《Ceramics International》2022,48(2):2385-2393
Full potential LAPW + lo method is used for exploring electronic, structural and thermoelectric properties for MgNd2X4 (X = S, Se) spinels that are found to show ferromagnetic-semiconductor behaviour in the spinel structure. The investigated negative value of formation energy and positive value of phonon spectra computed using PBEsol GGA indicates the energetic and dynamical stability of the studied cubic ferromagnetic-semiconductors. We have used TB-mBJ potential functional for electronic and magnetic properties, which lead to a reliable account of electronic structure, demonstrating band occupancy in the spinels along with a clear explanation of density of states. The stability of ferromagnetic state in the studied materials is because of the exchange splitting of Nd cations based on p-d hybridization which is in accordance with the results obtained for electronic band structure and density of states. The exchange splitting of bands can be justified by the spin magnetic moment between anions and cations, and sharing of charge. The computed values of dielectric constant and their associated optical parameters are used to explain the optical active behaviour of the spinels under investigation; indicating that the two spinels studied in the present work are suitable for solar cells device applications. The calculation of thermoelectric properties is very useful for determining a material's potential use in waste energy recovery systems and many other innovative applications.  相似文献   

10.
《Ceramics International》2022,48(16):22896-22905
Spinel ferrites are widely used for electromagnetic wave (EMW) absorption applications. In this study, spinel Ni–Zn ferrites with excellent microwave absorption properties were synthesized. Their EMW absorption characteristics and interaction mechanisms were studied to lay the foundation for the study of the role of Ni–Zn ferrite as a magnetic substrate for composites. Herein, Ni0·5Zn0·5Fe2O4 was prepared by the hydrothermal method (H-NZFO) and the sol–gel auto-combustion method (S-NZFO); both samples exhibited distinct microwave absorption properties. The S-NZFO absorber (thickness = 3.72 mm) demonstrated the best dual-zone microwave absorption with two strong reflection loss peaks at 5.1 and 10.5 GHz. The corresponding effective absorption bandwidth (EAB) reached 9.0 GHz, which covered part of the S-band and all of the C- and X-bands. These results were attributed to the high saturation magnetization, outstanding complex permeability, and multiple magnetic loss channels of S-NZFO. The H-NZFO sample exhibited excellent absorption capability and matching thickness. At a thickness as low as 1.71 mm, the minimum reflection loss (RLmin) of the H-NZFO absorber reached -60.2 dB at 13.1 GHz. The maximum bandwidth corresponding to RL below -10 dB was 4.6 GHz. These results can be attributed to small particle size, high complex permittivity, and multiple dielectric loss channels of H-NZFO. The observed wide effective absorption bandwidth of S-NZFO and strong microwave absorption capability of H-NZFO suggest the potential of both materials as substrates for efficient microwave absorbers in military as well as civilian absorption applications.  相似文献   

11.
In this study, ternary MWCNTs/CoFe2O4/FeCo nanocomposite coated with conductive PEDOT-polyaniline (PA@MW/F/C) co-polymers were synthesized by microwave-assisted sol-gel followed in-situ polymerization methods. The phases, crystal structures, morphologies, magnetic and electromagnetic features of the as-prepared samples were identified via XRD, SEM, XPS, VSM, and VNA respectively. Absorption characteristics were investigated in the frequency (12–18 GHz) Ku band. XRD, VSM and SEM analysis confirmed the partial reduction process of CoFe2O4 and successfully decorated magneto-dielectric particles with co-polymers. By measuring electromagnetic features of the samples, it was found that coating magneto-dielectric particles with conductive co-polymers improved the permittivity and dielectric constant, accordingly affecting the impedance matching characteristic and attenuation constant performance. Moreover, exchange coupling behavior was found significant impacts on the microwave absorption properties. PA@MW/F/C coated nanocomposite revealed the maximum reflection loss of ?90 dB at 13.8 GHz with 4 GHz effective bandwidth and 1.5 mm thickness. Due to the enhanced interfacial polarization, impedance matching and exchange coupling effects of the as-prepared nanocomposite, it owns excellent microwave absorption properties, which can be applied as an absorber with distinguishing features (strong absorption, thin thickness, and broadest effective bandwidth).  相似文献   

12.
The proliferation of electronic devices and wireless communication is leading to serious electromagnetic (EM) interference. In this work, Ti3C2/cement composites were developed as high efficiency EM functional materials by introducing exfoliated Ti3C2Tx MXene with cement for green buildings with EM shielding function. In the composites, few-layered Ti3C2 MXene were dispersed homogeneously throughout the cement matrix. The EM properties of the composites were studied as a function of the MXene content. With increasing MXene content, real and imaginary part of permittivity was significantly improved owing to the polarization and electrical conduction caused by the MXene phase. Composites with 15 wt.% MXene showed good EM absorbing properties with a maximum effective absorbing bandwidth of 2.67 GHz. Strong EM shielding can be achieved when MXene content increased to 25 wt.%. The EM shielding effectiveness of such composites was higher than 22.0 dB, and the dominating shielding mechanism was EM absorption. This work finds new materials for the development of advanced green buildings with EM shielding function.  相似文献   

13.
《Ceramics International》2023,49(4):5997-6005
Due to the escalating demand for electronic dependability and defense security, there has been a surge in research into broadband and lightweight microwave absorbers. Porous composites that are lightweight and plentiful in interfaces have the potential to be high-performance absorbers due to their ability to attenuate waves in a balanced manner and match impedance. “Using a solvothermal technique we generated FeSe2/rGO composites with a porous topology. By varying the weight of rGO, the electromagnetic properties of FeSe2/rGO composites may be finely tuned. Impedance matching and attenuation capability are both improved as a direct result of the porous structure and the appropriate electromagnetic parameters. FeSe2/rGO composites benefit from the tunable composition, porous structure, and strong synergistic effect between FeSe2 and rGO sheets and display outstanding microwave absorption performance with an ultrabroad bandwidth approaching 5.2 GHz with a thin thickness of 1.6 mm which covers 75% of the studied frequency range. At the same thickness, a significant reflection loss of ?43.7 dB is attained. This work not only enables the tuning of electromagnetic parameters but also expands the use of high-performance microwave absorption devices. Remarkable microwave absorption ability, of the porous composites FeSe2/rGO can be utilized as a high-performance microwave absorber.”  相似文献   

14.
《Ceramics International》2022,48(2):1690-1698
Considering the promising efficiency of composites, in the current study, a graphene oxide (GO)-magnetite-Prussian blue (PB) composite material was prepared. The composite exhibited electrical conductivity, magnetic permeability, and permittivity nature, and was evaluated using electromagnetic interference (EMI) shielding studies. GO was developed by the Hummer's method, ferrite (Fe3O4) was incorporated by the sol-gel method, and PB was introduced in the mixture by an in-situ process. The fabricated samples were studied by X-ray diffraction, Raman Spectroscopy, Fourier-transform infrared spectroscopy along with EMI shielding efficiency (SE) evaluation. The SE of ?71.66 dB of reflection losses was measured at a frequency of 1.5 MHz. The GO/Fe3O4/PB composite provided the best results for the detection in the 1–18 MHz frequency range because of its excellent electric and magnetic properties. The obtained results demonstrated that the GO/Fe3O4/PB composite has promising potential applications in EMI shielding.  相似文献   

15.
《Ceramics International》2022,48(20):29561-29571
Currently, materials with outstanding absorption abilities, such as thin size, better absorbing power, and light weight are the need of industry to resolve the electromagnetic issues. However, the research on optimizing the composition of the material, microstructure and the structure of the absorber are also the important factors for enhancing the absorption features. A metamaterial microwave absorber (MMA) based on nano ferrites with desirable absorption peaks is proposed and simulated. Sol-gel auto combustion route is used to prepare the nanosized Sm doped Co ferrite with Co1+xSmxFe2-2xO4 at x = 0.00, 0.03, 0.06, 0.09, respectively. XRD, VSM, FESEM, and VNA were employed to evaluate the structural, magnetic, morphological, and dielectric features. Rietveld refinement of the XRD patterns of samples was evaluated. Refined parameters show the spinel phase's emergence and the Fe2O3 phase. Grain size and crystallite size were increased with Sm doping in Co ferrite. Electromagnetic studies depicted that the highest dielectric constant value was found at x = 0.09 and the minimum value at x = 0.03, respectively. Sm doped Co ferrite at x = 0.09 depicted high Q values at higher frequencies. The coercivity values first decreased and then increased. All samples exhibit variations in coercivity and magneto-crystalline anisotropy constant. This variation was attributed to the super-exchange interactions and strong LS coupling of the cations. The multiple absorption peaks are attained for TE-polarization, and the absorptivity is considerably improved for x = 0.09. The proposed absorber simulated from CST depicted the absorption peaks of the S-band and C-band of the microwave regime. The synergistic effects among the metamaterial and ferrite layers may enhance the absorption feature and would be useful for satellite communication applications.  相似文献   

16.
《Ceramics International》2023,49(3):4713-4721
The electromagnetic pollution problem, particularly at microwave frequencies, poses a threat to not only sensitive technological gadgets but also to the health of humans. Therefore, there is a great need for lightweight and highly effective microwave-absorbing materials (MAMs). Here, we fabricated a hierarchical flower-like MoSe2 structure and a rod-like MnFe2O4@MnO2 architecture via a solvothermal method. Single-layer and bilayer samples were fabricated to study the microwave absorption feature. In single-layer samples, the flower-like MoSe2 structure has better microwave absorption properties than the rod-like MnFe2O4@MnO2 architecture. And in bilayer absorbing samples, a sample with a flower-like MoSe2 structure as the top layer shows high absorption performance. Moreover, in bilayer samples, changes were made to the thickness of both layers to find the best parameters. An optimal bilayer sample has been achieved with a flower-like dielectric MoSe2 structure as a top layer having a 1 mm thickness and magnetic MnFe2O4@MnO2 as a bottom layer also with a 1 mm thickness; indicating that a strong absorption can only be attained by balancing dielectric loss and magnetic loss. Moreover, the optimal sample shows decent absorption with an effective absorption bandwidth (EAB) of 5.4 GHz (14.7–9.3 GHz) with a 1 mm thickness of each layer. The simulated results of the optimal sample have also been compared with experimental results. These results suggest a different approach for developing MAMs in the future.  相似文献   

17.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   

18.
《Ceramics International》2023,49(2):2130-2139
In this research, we developed a wideband electromagnetic wave absorber suitable for the X-band frequency by using a unique hybrid nanocomposite structure made of FeWO4 embellished with Ag3PO4 nanopowders. Simple chemical hydrothermal and microwave-aided hydrothermal procedures were used to successfully produce single-phase spherical-like FeWO4 and FeWO4@Ag3PO4 nanocomposite powders. Using XRD, FTIR, VSM, FESEM, and VNA methods, the phase constituents, morphological, magnetic, and electromagnetic properties of the produced nanocomposite materials were assessed. The resin-based nanocomposite absorber sample allows to obtain a maximum reflection loss of ?21 dB with a matching thickness of 1.8 mm at the ferromagnetic resonance of 10.4 GHz with a 3.8 GHz effective absorption bandwidth, which is evaluated using the waveguide technique, when the filler loading percentage reaches 40 wt percent (S40). S40 had superior impedance matching capabilities, a wide effective absorption bandwidth, and a high absorption capacity when compared to other produced absorber samples. The best sample is prepared for free-space testing with the dimension of 200 × 200 mm and an optimum thickness of 1.8 mm, and the results demonstrate a good agreement between the waveguide and free-space technique results. This absorber sample's wideband absorption capacity was attained by adjusting the magneto-electric composition and enhancing the interfacial characteristics brought on by the core-shell construction. In this study, a design approach for efficient microwave absorbers based on a magneto-electric hybrid nanocomposite structure is presented, using waveguide and free-space experimental methods in two different ways.  相似文献   

19.
Electromagnetic interference shielding effectiveness (EMI SE) of multifunctional Fe3O4/carbon nanofiber composites in the X-band region (8.2–12.4 GHz) is studied. Here, we examine the contributing effects of various parameters such as Fe3O4 content, carbonization temperature and thickness on total shielding efficiency (SEtotal) of different samples. The maximum EMI SE of 67.9 dB is obtained for composite of 5 wt.% Fe3O4 (0.7 mm thick) with the dominant shielding by absorption (SEA) of electromagnetic radiation. The enhanced electromagnetic shielding performance of Fe3O4/carbon nanofiber composites is attributed to the increment of both magnetic and dielectric losses due to the incorporation of magnetite nanofiller (Fe3O4) in electrically conducting carbon nanofiber matrix as well as the specific nanofibrous structure of carbon nanofiber mats, which forms a higher aspect ratio structure with randomly aligned nanofibers. Furthermore, we prove that the addition of elastomeric polydimethylsiloxane (PDMS) as a coating for carbon nanofiber composite strengthens the composite structure without interfering with its electromagnetic shielding efficiency.  相似文献   

20.
《Ceramics International》2016,42(5):6107-6114
A series of Ca3Co4−xMnxO9+δ (x=0, 0.25 and 0.5) samples were prepared under two-step external magnetic field during both processes of sol–gel and pre-pressing. The effects of Mn doping and external magnetic field on the microstructure and electrical transport properties of the samples have been studied systematically. The investigated results show that Mn-doping can improve the electrical transport properties slightly. After using external magnetic field, the textured structures of all the samples are enhanced dramatically, which results in the obvious decrease of the electrical resistivity and increase of Seebeck coefficient. The difference of ρ between the x=0.5 samples without and with external magnetic field is about 24.73  cm at room temperature. All the samples with magnetic field show higher power factors (PF), for example, the PF at x=0.5 with magnetic field can reach the maximum value of 0.29 mW/m K2 at 1073 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号