首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Novel nanostructured Fe2O3 with a network of 3D mesoporous nanosheets was synthesized by depositing on carbon fabric (Fe2O3@CF) for use as an anode using a potentially low-cost electrodeposition technique. The electrode with freestanding binder-free Fe2O3@CF of high surface area displayed an exceptional specific capacitance of 394.2?F?g?1. Moreover, a flexible solid-state asymmetric supercapacitor (ASC) was fabricated with a negative electrode based on Fe2O3@CF and a positive electrode based on MnO2@CF in the presence of PVA-LiCl as gel electrolyte. The above ASC exhibited a high operating potential up to 1.8?V, a favorable specific capacitance of 93.5?F?g?1 (2.92?F?cm?3), long-term stability (91.3% retention of initial value over 5000 cycles), and remarkable mechanical stability and flexibility, suggesting its potential application for wearable electronics.  相似文献   

2.
Production cost,capacitance,and electrode materials safety are the key factors to be concerned about for supercapacitors.In this work,a type of carbon nanosheets was produced through the carbonization of tripotassium citrate monohydrate and nitric acidification.Subsequently,a well-designed manganese dioxide/carbon nanosheets composite was synthesized through hydrothermal treating.The carbon nanosheets served as the substrate for growing the manganese dioxide,regulating its distribution,and preventing it from inhomogeneous dimensions and severe agglomeration.Many manganese dioxide nanosheets grew vertically on the numerous functional groups generated on the surface of the carbon nanosheets during acidification.The synergistic combination of carbon nanosheets and manganese dioxide tailors the electrochemical performance of the composite,which benefits from the excellent conductivity and stability of carbon nanosheets.The carbon nanosheets derived from tripotassium citrate monohydrate are conducive to the remarkable performance of manganese dioxide/carbon nanosheets electrode.Finally,an asymmetric supercapacitor with active carbon as the cathode and manganese dioxide/carbon nanosheets as the anode was assembled,achieving an outstanding energy density of 54.68 Wh·kg?1 and remarkable power density of 6399.2 W·kg?1 superior to conventional lead-acid batteries.After 10000 charge-discharge cycles,the device retained 75.3%of the initial capacitance,showing good cycle stability.Two assembled asymmetric supercapacitors in series charged for 3 min could power a yellow light emitting diode with an operating voltage of 2 V for 2 min.This study may provide valuable insights for applying carbon materials and manganese dioxide in the energy storage field.  相似文献   

3.
近年来,越来越多的研究致力于开发新型、超高能量密度、高法拉第反应活性的电极材料,尤其将其应用于新一代超级电容器储能系统。通过水热法直接在柔性基质碳布上生长海胆状V2O5纳米球和十四面体Fe2O3纳米盒子。V2O5微观结构和储能性能可通过改变水热时间进行调控。海胆状V2O5纳米球正极材料具有最高比容量535 F·g-1。以十四面体Fe2O3纳米盒子作为负极材料组装的新型结构V2O5-CC//Fe2O3-CC柔性超级电容器,在功率密度为699.49 W·kg-1时,能量密度可达46.06 W·h·kg-1。而且具有良好的机械柔韧性,在180°弯曲循环测试5000次,比容量保持率仍高达83.4%。研究为开发下一代超高能量密度、柔性电子器件提供了一种通用而有效的策略。  相似文献   

4.
In recent years, more and more research has been devoted to the development of new electrode materials with ultra-high energy density and high Faraday reaction activity, especially applying them to a new generation of supercapacitor energy storage systems. In this study, sea urchin-shaped V2O5 nanospheres and tetrakaidecahedron Fe2O3 nano boxes have been grown directly on flexible matrix carbon cloth by hydrothermal method. The hydrothermal time can control the microstructure of V2O5, and the morphology determines the performance of energy storage, the positive electrode material of sea urchin-shaped V2O5 nanosphere exhibits a maximum specific capacitance of 535 F·g-1. In addition, the tetrakaidecahedron Fe2O3 nano box is used as the negative electrode, and a new structure V2O5//Fe2O3 flexible supercapacitor is assembled. When the power density is 699.49 W·kg-1, the energy density can reach 46.06 W·h·kg-1. Moreover, it also has good mechanical flexibility, and the specific capacity retention rate is still as high as 83.4% after 5000 times of 180° bending cycle tests. This work provides a general and effective strategy for developing the next generation flexible electronic devices with ultra-high energy density.  相似文献   

5.
《Ceramics International》2023,49(3):4281-4289
Electrochemical energy storage and water splitting strategies may be greatly improved with proper structural design and doping techniques. In the present study, molybdenum-doped ZnAl2O4 loaded on carbon fiber (Mo–ZnAl2O4/CF) was fabricated via a simple hydrothermal synthetic approach. Due to its unique hierarchical nanostructures and enhanced electrical, structural topologies, Mo-doped ZnAl2O4 demonstrates exceptional supercapacitor performance and electrocatalytic oxygen evolution reaction activity. The Mo-doped ZnAl2O4 electrode material exhibited 1477.63 F g?1 specific capacitance, 46.57 Wh Kg?1 specific energy and specific power of 476.4 W kg?1 at 1 A g?1. After 5000 cycles, the pseudo supercapacitor retains 97.46% of its capacitance and displays stable behavior over 50 h. During the OER reaction, the Mo–ZnAl2O4/CF as an electrocatalyst rapidly self-reconstructs, resulting in many oxygen vacancies, and causes a lower 38 mV dec?1 Tafel slope and overpotential potential of 255 mV to achieved 10 mA cm?2 current flow and responsible for the excellent stability of the electrocatalyst. These findings suggest that multifunctional materials based electrode for electrical energy conversion and storage become more efficient and stable by using Mo for doping to generate porous hierarchical structures and local amorphous phases.  相似文献   

6.
《Ceramics International》2020,46(4):4470-4476
The energy security and mounting environmental issues compel the scientific community to allocate greatly efficient and economical energy renovation and storage systems. Among the energy storage devices, supercapacitors have become the forefront in energy storing systems in recent decades. The efficiency of supercapacitors mainly depend on the electrode's material and they usually suffer from a quick reduction in specific capacitance at higher current densities. Herein, we combined the nano-plates like bimetallic oxides (NiMiO4) with mixed valence states on the surface of a conductive substrate (carbon cloth) without any binder and additives (denoted NMO@CC). The as-prepared electrode NMO@CC showed marvelous electrochemical properties in the aqueous basic electrolyte by achieving a high capacity of 1500 C g−1 at current density of 5 A g−1 with high degree of rate capability. More interestingly, the NMO@CC electrode demonstrated excellent cycling stability of 94.63% after 5000 cycles during charge-discharge process. Further, the charge storage mechanism of NMO@CC electrode is investigated by analyzing the surface capacitive and diffusion controlled processes and it shows high surface capacitive storage (71%). These admirable results are based on the highly open channels for efficient diffusion of electrolyte ions and electronic transmission through the NMO and backbone carbon cloth, respectively. Therefore, accurate morphology and surface manufacturing engineering are highly appreciated to enhance the active surface area and inherent conductivity of electrode materials.  相似文献   

7.
《Ceramics International》2021,47(23):32727-32735
NiCo2O4 is a promising electrode material for supercapacitors and it has been widely investigated. However, its low conductivity restricts the reaction kinetics. Combining it with carbon materials can efficiently overcome the issue. But, very limited research about the homogenous coatings of NiCo2O4 nanocrystals on carbon nanotubes (CNTs) is reported. In this work, thin nanosheets and small nanoparticles of NiCo2O4 densely coated on CNTs are synthesized by tuning the annealing time with a hybrid of metal hydroxide@CNTs as a precursor. In the precursor, core−shell structures are formed by conformally coating 2D metal hydroxides on CNTs. After annealing it at 300 °C for different time, NiCo2O4 nanosheets or nanoparticles are then obtained and the core−shell structure is remained. Due to the reduced crystal size of NiCo2O4 and the high conductivity of CNTs, the composites have large specific capacitances, excellent rate performances, and good stability. The composite of NiCo2O4 nanoparticles on CNTs has a higher specific capacitance, about 1786 F g−1 at 0.5 A g−1, than the hybrid of NiCo2O4 nanosheets on CNTs due to their different morphologies. Using the composite as positive electrode and activated carbon as negative electrode, a hybrid capacitor cell can work in a voltage of 1.6 V, delivering an energy density of 32.5 Wh kg−1 at 800 W kg−1, showing a large potential for supercapacitors.  相似文献   

8.
《Ceramics International》2019,45(12):14634-14641
Co3O4/melamine-derived carbon sponge (MCS) nanocomposite in which wrinkled ball-in-dodecahedral Co3O4 nanoparticles derived from ZIF-67 were homogeneously dispersed on the interconnected MSC was fabricated via a simple immersion and thermolysis route. As-prepared ultralight Co3O4/MCS possessed mechanically robust characteristic and unique 3D macroporous framework anchored with corrugated Co3O4 dodecahedra. Utilized as a pseudocapacitor electrode, Co3O4/MCS hybrid exhibited a great specific capacitance of 1409.5 F g−1 at the current density of 0.5 A g−1 and excellent long-term cycling stability of 93.2% after 1000 charge/discharge cycles, which might be ascribed to the synergistic effect of the inherent high redox activity from Co3O4 polyhedra combined with excellent electrical conductivity of MCS. This work demonstrates that tunable structure design and rational morphology control are efficient approaches for manufacturing novel electrode materials with extraordinary electrochemical performance.  相似文献   

9.
《Ceramics International》2016,42(10):12129-12135
A ternary composite of V2O5/carbon nanotubes/super activated carbon (V2O5/CNTs–SAC) was prepared by a simple hydrothermal method and used as a supercapacitor electrode material. The electrochemical performance of the electrode was analyzed using cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy, which were performed in 2 M NaNO3 as the electrolyte. The V2O5/CNTs–SAC nanocomposite exhibited a specific capacitance as high as 357.5 F g−1 at a current density of 10 A g−1, which is much higher than that of either bare V2O5 nanosheets or a V2O5/CNTs composite. Furthermore, the capacitance increased to 128.7% of the initial value after 200 cycles, with 99.5% of the maximum value being retained after 1000 cycles. These results demonstrated that the V2O5/CNTs–SAC ternary composite is suitable for use as an electrode material for supercapacitors.  相似文献   

10.
The incorporation of nanosized pseudocapacitive materials and structure design are general strategies to enhance the electrochemical performance of MXene-based materials. Herein, the decoration of manganese dioxide (MnO2) nanosheets on MXene (Ti3C2Tx) surfaces was prepared by a facile liquid phase coprecipitation method. Ti3C2Tx is initially modified by polydopamine (PDA) coating to ensure the homogeneous distribution of MnO2 nanosheets and tight and close connections between MnO2 and the Ti3C2Tx backbone. Due to the obtained three-dimensional (3D) nanostructure, facilitating electron transport within the electrode and promoting electrolyte ion accessibility, the δ-MnO2@Ti3C2Tx-0.06 electrode yields superior electrochemical performances, such as a rather large areal capacity of 1233.1 mF cm?2 and high specific capacitance of 337.6 F g?1 at 2 mV s?1, as well as high cyclic stability for 10000 cycles. Furthermore, δ-MnO2@Ti3C2Tx-0.06 composites are employed as positive electrodes, and activated carbon (AC) materials act as negative electrodes with an aqueous electrolyte of 1 M Na2SO4 to assemble asymmetric supercapacitors. The prototype device is reversible at cell voltages from 0 to 1.8 V, and manifests a maximum energy density of 31.4 Wh kg?1 and a maximum power density of 2700 W kg?1. These encouraging results show enormous possibilities for energy storage applications.  相似文献   

11.
《Ceramics International》2023,49(4):6280-6288
Bundled V2O5 nanobelts decorated with Fe3O4 nanoparticles (F3V nanostructures) were successfully synthesized to develop a low-cost electrode material for energy storage applications. The synthesized samples were subjected to structural, morphological and electrochemical studies. The Fe3O4 nanoparticles decorated over bundled V2O5 nanobelts exhibited better electrochemical properties than the pristine Fe3O4 nanoparticles and V2O5 nanobelts. The electrochemical behavior of the fabricated electrodes was investigated in an electrolyte of 3 M KOH, demonstrated an exceptional specific capacity values of 750.1, 660.3, and 1519 F g–1 for V2O5, Fe3O4, and F3V respectively at a current density of 15 A g–1. The assembled F3V symmetric supercapacitor (SSC) device exhibited an excellent specific capacitance of 93 F g–1 at a current density of 0.5 A g–1, delivering energy and power densities of 13 Wh.kg–1 and 1530 W kg–1, respectively, and superior long-term cycling stability of ~84% capacity retention over 5000 galvanostatic charge–discharge cycles. These findings demonstrate the extraordinary electrochemical characteristics of the F3V nanostructures, indicating their potential use in energy storage applications.  相似文献   

12.
《Ceramics International》2022,48(10):13996-14003
The demand for wearable electronics has greatly promoted the development of flexible supercapacitors. Herein, we develop a series of approaches to fabricate a fiber-shaped supercapacitor with flexibility. In the device, CuO@MnO2, carbon nanotube (CNT)@MnO2 and PVA-KOH are respectively used as inner electrode, outer electrode and gel electrolyte. The approaches including in-situ growth of CNTs, in-situ etching removal of SiO2 template and in-situ filling of gel electrolyte via hydrothermal process are explored to protect the device from structure damage caused by external forces and to maximize effective contact areas between active electrode materials and gel electrolyte. The optimized supercapacitor of copper wire@CuO@MnO2//PVA-KOH//CNT@MnO2 demonstrates a good capacitive performance (5.97 F cm?3) and exhibits a high energy density (0.38 mWh cm?3) at a power density of 25.5 mW cm?3. In addition, it has perfect cycling stability (77% after 2000 cycles) with excellent flexibility. Therefore, this work will provide desirable processes to construct fiber-shaped supercapacitors as flexible and wearable energy storage devices.  相似文献   

13.
《Ceramics International》2022,48(15):21317-21326
1T phase molybdenum disulfide (1T-MoS2) has aroused extensive concern in energy storage devices such as supercapacitors due to its large interlayer spacing, high conductivity and good hydrophilicity. However, it is struggle to synthesize 1T-MoS2 with stable 1T phase with high content. Herein, Ammonium ion intercalation molybdenum disulfide (A-MoS2) with high 1T content and stable 3D microsphere structure was successfully synthesized using a facile hydrothermal method. We explained the feasibility of ammonium ion (NH4+) intercalation through density functional theory (DFT) calculations and proved the successful intercalation of NH4+ by XRD and XPS. Through XPS fitting, the 1T phase content is calculated as high as 83.1%. The as-prepared A-MoS2 presents a stable 3D microsphere structure with the interlayer spacing expanded to 0.93 nm, which provides a wide ion diffusion channel that allows ions to pass through quickly. Moreover, the high 1T content increases the hydrophilicity of MoS2, thereby improving the wettability of the electrode, which contributes to the interaction between the electrolyte and electrode. In 1 M Na2SO4, A-MoS2 electrode material displays high specific capacitance of 228 F g?1 at 5 mV s?1 and retains 127 F g?1 at 80 mV s?1, which proves the good rate capability. Furthermore, the assembled α-MnO2//A-MoS2 asymmetric supercapacitor (ASC) displayed a wide operating voltage of 2.1 V. The assembled ASC displays a high energy density of 35.8 Wh?kg?1 at a power density of 525.0 W kg?1, which indicates excellent energy storage performance.  相似文献   

14.
A novel fibrous MnO2 electrode for a fuel cell/battery system is fabricated on carbon fiber by the electrodeposition method. The characteristics of the fibrous MnO2 electrode are examined by electrochemical impedance spectra, galvanostatic performance and cyclic voltammetry. The experimental results indicate that the fibrous MnO2 electrodes are superior to pasted electrodes because of the following: (i) better contact between MnO2 and the electrical conducting material; (ii) high charge-transfer rate because of a smaller diameter than conventional electrodeposited MnO2 particles (thus it is expected that the specific surface area would be higher); and (iii) a low overpotential. The morphology and the crystal structure of the fibrous MnO2 electrode are investigated by scanning electron microscopy and X-ray diffraction, respectively. The entire surface of the carbon fiber is found to be coated with γ-MnO2 after 2 h of electrodeposition at 0.01 A dm−2 current density.  相似文献   

15.
To prevent restacking of the Ti3C2Tx layers, the Ti3C2Tx-foam has been successfully synthesized through thermal treatment of Ti3C2Tx-film with the hydrazine monohydrate. The interconnected porous structure of Ti3C2Tx-foam could effectively reduce the restacking of the Ti3C2Tx sheets and shorten the diffusion path of ions and accelerate the intercalation/de-intercalation of ions. The Ti3C2Tx-foam-80 used as free-standing electrode achieves a high areal capacitance of 271.2 mF/cm2 (122.7?F/g) at a scan rate of 5?mV/s in 1?M KOH electrolyte. It also exhibited a high capability rate of 65.5% from 5?mV/s to 100?mV/s and good cycle life with 88.7% retention of its initial after 10,000 cycles at a scan rate of 50?mV/s.  相似文献   

16.
《Ceramics International》2017,43(3):3127-3132
Ceramics-polymer nanocomposites consisting of core-shell structured BaTiO3@Al2O3 (BT@Al2O3) nanoparticles as the filler and poly(vinylidene fluoride) (PVDF) as the polymer matrix were fabricated by solution casting. At the same volume fraction, the BT@Al2O3/PVDF nanocomposites, with larger dielectric constant and higher energy density, outperformed the BT/PVDF nanocomposites. The 2.5 vol% BT@Al2O3/PVDF nanocomposites at 360 MV/m had a double more energy density than pure PVDF at 400 MV/m (6.19 vs. 2.30 J/cm3), and a remarkably 42% lower remnant polarization than the 2.5 vol% BT/PVDF nanocomposites (0.99 vs. 1.69 μC/cm2 at 300 MV/m). Such significant enhancement was closely related to the surface modification by Al2O3, which improved the insulation of BT nanoparticles and reduced the contrast of dielectric constant between the filler and the PVDF matrix.  相似文献   

17.
《Ceramics International》2016,42(11):12709-12714
Cobalt ferrite nanoparticles were successfully deposited on carbon fibers as a 3D structure using electrophoretic method to study magnetic and microwave absorption properties. Three well stabilized suspensions from cobalt ferrite nanoparticles were prepared in acetone, ethanol and acetone-ethanol media: and iodine was used as a stabilizing agent. Constant voltage and time were taken into account to investigate their influence on coating morphology and thereafter microwave absorption property. Field-Emission Scanning Electron Microscopy, Differential Thermal Analysis and X-ray Diffractometer were employed to study morphology, thermal behavior and structure of powder, respectively. To investigate magnetic and reflection loss properties, Vibrating Sample Magnetometer and Vector Network Analyzer were used. Particle size distribution and zeta potential was obtained by Dynamic Light Scattering device. It was observed that by optimizing voltage amount and time to 25 V and 6 min, respectively; uniformity of coating was improved and this led to the highest attenuation of −10.25 dB in vicinity of 8–12 GHz.  相似文献   

18.
The fabrication process and material design of flexible lithium-ion batteries (LIBs) are essential in flexible portable devices. In particular, the carbon nanofiber (CNF)-based active anodes with flexibility synthesized using an electrospinning technique showed fairly stable cycling performance in the LIBs. In this study, we synthesized the molybdenum carbide (MoC) embedded in CNFs as an anode for LIBs (MoC/CNF) using an electrospinning technique with amorphous Mo precursor and polyacrylonitrile as the molybdenum and carbon sources, respectively, and using a heating process under an N2 atmosphere. The as-prepared flexible MoC/CNF showed a 3D porous structure consisting of crystalline MoC and amorphous CNF. MoC/CNF, directly utilized as an active electrode without binder, conductor, or current collector, exhibited superior LIB performance, i.e. high capacity, cyclability, and high-rate properties. In particular, at a considerably high charge/discharge rate of 10?A?g?1, the specific capacity of MoC/CNF (109?mAh?g?1) was significantly higher than that of pure CNF electrode (3?mAh?g?1).  相似文献   

19.
High density three-dimensional AZO/Al2O3/AZO nanocapacitor arrays have been fabricated for energy storage applications. Using atomic layer deposition technique, the stack of AZO/Al2O3/AZO has been grown in the porous anodic alumina template which is directly formed on the Si substrate. The fabricated capacitor shows a high capacitance density of 15.3 fF/μm2 at 100 kHz, which is nearly 2.5 times over the planar capacitor under identical conditions in theory. Further, the charge-discharge characteristics of the capacitor are characterized, indicating that the resistance-capacitance time constants are equal to 300 ns for the charging and discharging processes, and have no dependence on the voltage supply. This reflects good power characteristics of the electrostatic capacitor.  相似文献   

20.
Platinum nanoparticles (PtNPs) were synthesized on surface-activated carbon fibers with high thermal conductivity, and paper-structured composites were fabricated by a papermaking technique, using the PtNPs-supported carbon fibers and ceramic fibers as matrix materials. As-prepared materials, denoted paper-structured PtNPs catalyst, possessed a unique porous microstructure derived from entangled inorganic fiber networks on which PtNPs were well dispersed. In catalytic reduction of nitrogen oxides (NOX) in the presence of methane (CH4), both of which are model exhaust gas components of combustion engines, paper-structured PtNPs catalyst demonstrated excellent NOX and CH4 removal efficiency and rapid thermal responsiveness by comparison with the PtNPs-supported carbon fibers, commercial Pt catalyst powders and a monolithic Pt-loaded honeycomb. These features of the new catalyst material are thought to arise from synergistic effects of the highly active PtNPs in association with the unique paper-like microstructure, in promoting effective transfer of heat and reactants to the active sites of the Pt nanocatalysts. The paper-structured PtNPs catalyst with paper-like practical utility is expected to be a promising catalytic material for efficient NOX gas purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号