首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(6):7888-7895
Graphite carbon nitride (g-C3N4) is an appealing metal-free photocatalyst for hydrogen evolution, but the potential has been limited by its poor visible-light absorption and unsatisfactory separation of photo-induced carriers. Herein, a facile one-pot strategy to fabricate carbon self-doped g-C3N4 composite through the calcination of dicyanamide and trace amounts of dimethylformamide is presented. The as-obtained carbon self-doped catalyst is investigated by X-ray photoelectron spectroscopy (XPS), confirming the substitution of carbon atoms in original sites of bridging nitrogen. We demonstrate that the as-prepared materials display remarkably improved visible-light absorption and optimized electronic structure under the premise of principally maintaining the tri-s-triazine based crystal framework and surface properties. Furthermore, the carbon doped g-C3N4 composite simultaneously weakens the transportation barrier of charge carriers, suppresses charge recombination and raises the separated efficiency of photoinduced holes and electrons on account of the extension of pi conjugated system. As a result, carbon self-doped g-C3N4 exhibits 4.3 times greater photocurrent density and 5.2 times higher hydrogen evolution rate compared with its bulk counterpart under visible light irradiation.  相似文献   

2.
In this study, graphitic carbon nitride (g-C3N4) was successfully coupled with TiO2 using hydrothermal method, to develop an advanced heterojunction photocatalyst. The interaction between g-C3N4 and TiO2 was confirmed through analysis of X-Ray spectroscopy (XPS) C 1s, N 1s, O 1s high resolution core level spectra of g-C3N4, TiO2 and g–C3N4–TiO2 heterojucntion. Further, through valence band spectra analysis, conduction band offset (0.12 eV) and valence band offset (0.28 eV) of g–C3N4–TiO2 heterojunction were estimated. Also, composite material was identified as type II heterojunction between g-C3N4 and TiO2. XRD, UV–vis, BET and HRTEM were employed to understand the changes in physicochemical properties. Photocatalytic hydrogen production rates were evaluated through water splitting experiments. Under visible light irradiation highest hydrogen production rate was achieved for g–C3N4–TiO2 heterojunction sample with high content of TiO2, and was about 1041 μmol/g.h. The improved photocatalytic activity of the heterojunction material was explained in detail.  相似文献   

3.
《Ceramics International》2015,41(4):5600-5606
In this paper, WO3 nanorods (NRs)/g-C3N4 composite photocatalysts were constructed by assembling WO3 NRs with sheet-like g-C3N4. The as-synthesized photocatalysts were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activity of the photocatalysts was evaluated by degradation of Rhodamine B (RhB) under simulated sunlight irradiation. Compared to pristine WO3 NRs and g-C3N4, WO3 NRs/g-C3N4 composites exhibit greatly enhanced photocatalytic activities. The enhanced performance of WO3 NRs/g-C3N4 composite photocatalysts was mainly ascribed to the synergistic effect between WO3 NRs and g-C3N4, which improved the photogenerated carrier separation. A possible degradation mechanism of RhB over the WO3 NRs/g-C3N4 composite photocatalysts was proposed.  相似文献   

4.
A hierarchical structure composed of Pt@Co3O4/TiO2 (CTP) ternary nanocomposite was synthesized and demonstrated for its enhanced and durable production of hydrogen from glycerol under simulated solar light irradiation. The rate of hydrogen production over the optimized composition was found to be 19.2 mmol h?1 g?1cat. The obtained XRD and XPS results revealed the facile formation of the composite. The heterojunction formed in the ternary system remarkably enhanced the visible light absorption properties and charge separation in CTP as evidenced from their UV–visible absorption and PL spectra, respectively. The optimized union of the materials with specific properties and their intimate physical contacts might be the origin for the manifested, improved and durable photocatalytic efficiency towards hydrogen production.  相似文献   

5.
Hydrogen production by photolysis of water by sunlight is an environmentally-friendly preparation technology for renewable energy. Graphitic carbon nitride (g-C3N4), despite with obvious catalytic effect, is still unsatisfactory for hydrogen production. In this work, phosphorus element is incorporated to tune g-C3N4's property through calcinating the mixture of g-C3N4 and NaH2PO2, sacrificial agent and co-catalyst also been supplied to help efficient photocatalytic hydrogen production. Phosphorus (P) doped g-C3N4 samples (PCN-S) were prepared, and their catalytic properties were studied. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and ultraviolet diffuse reflection (UV-DRS) were used to study their structures and morphologies. The results show that the reaction rate of PCN-S is 318 μmol h−1 g−1, which is 2.98 times as high as pure carbon nitride nanosheets (CN) can do. Our study paves a new avenue, which is simple, environment-friendly and sustainable, to synthesize highly efficient P doping g-C3N4 nanosheets for solar energy conversion.  相似文献   

6.
随着工业的发展,化石燃料消耗巨大,环境问题也日益突出,寻找一种绿色新型能源已成为一个被广泛讨论的问题。氢气是一种清洁、可再生燃料,利用光催化剂分解水制氢气是一种制取氢气的有效途径。石墨碳氮化物(g-C3N4)作为光催化剂不仅成本低、反应稳定,而且其尺寸、厚度、结构、形貌等可控,在众多光催化剂中脱颖而出。但g-C3N4目前在光催化领域主要存在两个局限:g-C3N4不能有效地吸收光来产生足够多的光生电子-空穴对;g-C3N4不能有效的运输及分离光生电子-空穴对,以至于电子与空穴的复合率较高。文章综述了g-C3N4在光催化制氢领域的进展成果,分析了g-C3N4存在的问题并总结了其改进方法,最后对g-C3N4进行了展望,以期为设计高效、稳定的光催化制氢材料提供参考。  相似文献   

7.
《Ceramics International》2016,42(16):18443-18452
Highly efficient visible-light-driven heterojunction photocatalysts, spindle-shaped nanoporous TiO2 coupled with graphitic g-C3N4 nanosheets have been synthesized by a facile one-step solvothermal method. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis and UV–vis diffuse reflectance spectrometry (DRS), proving a successful modification of TiO2 with g-C3N4. The results showed spindle-shaped nanoporous TiO2 microspheres with a uniform diameter of about 200 nm dispersed uniformly on the surface of graphitic g-C3N4 nanosheets. The g-C3N4/TiO2 hybrid materials exhibited higher photocatalytic activity than either pure g-C3N4 or nanoporous TiO2 towards degradation of typical rhodamine B (RhB), methyl blue (MB) and methyl orange (MO) dyes under visible light (>420 nm), which can be largely ascribed to the increased light absorption, larger BET surface area and higher efficient separation of photogenerated electron–hole pairs due to the formation of heterostructure. In addition, the possible transferred and separated behavior of electron–hole pairs and photocatalytic mechanisms on basis of the experimental results are also proposed in detail.  相似文献   

8.
《Ceramics International》2021,47(18):25337-25342
ZnIn2S4/TiO2 photocatalyst was obtained by a facile hydrothermal method. Various techniques were used to characterize the ZnIn2S4/TiO2, crystal structure and optical properties of ZnIn2S4/TiO2. Cr (Ⅵ) as highly-toxic pollutant was used as the target reduction product to evaluate the catalytic performance of ZnIn2S4/TiO2 under visible light irradiation. According to the experiment results, the reduction rate of Cr(VI) in the presence of ZnIn2S4/TiO2 reaches 99% within 60 min, which is much better than ZnIn2S4 and TiO2, respectively. At the same time, ZnIn2S4/TiO2 also performs good stability for reduction rate hardly changes after 5 recycling experiments.  相似文献   

9.
《Ceramics International》2022,48(24):36644-36654
Z-scheme anatase/rutile TiO2/g-C3N4 hybrids (denoted as LTARCN-x, x represents calcination temperature) were designed and synthesized by growing TiO2 nanorods on the surface of g-C3N4 utilizing impregnation-calcination method. Furthermore, through the etched effect of hydrochloric acid and calcination treatment, the as-prepared LTARCN-x possessed abundant pore structure and larger surface area, and the surface area of LTARCN-425 was 8.5 times than that of bulk g-C3N4. Meanwhile, the g-C3N4 would play a role of carrier to prevent from the aggregation of TiO2 nanorods. In addition, under visible light irradiation, the Z-scheme heterostructure would be constructed between the rutile TiO2 nanorod and g-C3N4 nanosheet, respectively. The optimized photocatalyst LTARCN-425 exhibited a preferable activity, the photocatalytic hydrogen production rate of LTARCN-425 was about 1031 μmol g?1 h?1, and it was about 6.3 and 13.6 times than that of g-C3N4 and TiO2, respectively. Moreover, the photocatalytic mechanism of the hydrogen production was studied intensively via designing fluorescent probe, Pt and PbO2 deposition experiment, and the characterizations of EPR, TEM, HRTEM and XPS.  相似文献   

10.
In this work, a novel NiP2/g-C3N4 heterojunction via homogeneous precipitation method assisted by thermal phosphorization reaction was designed and constructed, and the optimized sample showed the excellent photocatalytic H2 evolution activity under visible-light irradiation, which was nearly 112 times higher than that of pristine g-C3N4 sample. Experimental characterizations and DFT calculations demonstrated that the NiP2 nanoparticles covered on the g-C3N4 surface can form a built-in electric field at the interface to accelerate the transfer of photoexcited electrons from g-C3N4 to NiP2, crucial for hindering the recombination of electron-hole pairs. Moreover, the energy barrier of hydrogen evolution reaction can also vastly reduce when combined NiP2 and g-C3N4 to construct NiP2/g-C3N4 heterojunction. This work represents a method through combing experimental and theoretical tools to thoroughly investigate the mechanism of photocatalytic process.  相似文献   

11.
《Ceramics International》2023,49(4):6213-6221
Researchers have attempted to developing high-efficiency catalysts for photocatalytic hydrogen evolution and organic pollution elimination simultaneously to alleviate the issues of energy shortage and water pollution. In this work, we fabricated 3D interconnected porous boron doped polymeric g-C3N4 catalysts with efficient photocatalytic activity for hydrogen evolution and dye contaminant elimination under visible-light irradiation. The as-fabricated catalysts exhibited significantly enhanced hydrogen evolution (4.37 mmol g ?1 h?1) and RhB contaminant elimination (96.37%) activity. Based on characterization and photocatalytic tests, an enhanced mechanism of the superior photocatalytic performance was proposed: 3D interconnected porous structure and B-doping have a synergistic effect on the greatly improved photocatalytic activity. The 3D interconnected structures endowed g-C3N4 with a higher specific surface area and abundant active sites and improved the capacity of rapid absorption to facilitate the photocatalytic process. B doping provided enhanced visible-light absorption capacity and a narrowed bandgap and served as a “highway” for electron-hole pairs to facilitate migration and separation and suppress the combination of photogenerated carriers. Besides, the possible mechanism of enhanced photocatalytic performance was elucidated according to the results of characterization measurements and active species analysis.  相似文献   

12.
《Ceramics International》2021,47(21):30194-30202
Transition bimetallic sulfides have attracted widespread attention because of their superior electrochemical characteristics compared to their parent materials. Herein, ternary ZnCo2S4 was deposited on g-C3N4 (CN) to enhance the photocatalytic water splitting reactivity of CN. The hydrogen (H2) evolution rate of 25 wt%-ZnCo2S4/CN reached 6619 μmol h−1 g−1, which was 55.2 times higher than that of CN alone. Under the same conditions, ZnS/CN and Co3S4/CN were also synthesized, and their H2 evolution rates were both inferior to that of ZnCo2S4/CN. Investigations showed that the presence of both zinc and cobalt ions in ZnCo2S4 lowered the H2 evolution overpotential and charge recombination rate, leading to excellent H2 release activity. In addition, the composite maintained its activity even after reacting for 20 h, and the charge transfer mechanism between ZnCo2S4 and CN was subject to the S-scheme charge transfer route according to trapping experiments for active species. This work revealed a promising and efficient bimetallic sulfide heterojunction to enhance H2 evolution during water splitting and thus achieved improved conversion efficiency for solar energy applications.  相似文献   

13.
《Ceramics International》2023,49(3):4733-4750
A new p-n type CBO/CN/RGO ternary heterojunction photocatalyst combining three-dimensional multi-stage rosette CuBi2O4 and two-dimensional g-C3N4 and RGO flakes was successfully prepared by ionic liquid-assisted hydrothermal method. The successful construction of p-n heterojunctions of CBO/CN/RGO composites was verified by means of UV–vis diffuse reflection, Mott Schottky curves and TEM, and construction the heterojunctions significantly improved that of the transfer and transport speed of photogenerated carriers. The photocatalytic degradation of MO by CBO/CN/RGO-6% reached 91.83% within 150 min, while the kinetic constants of degradation k were 9.7 and 7.9 times greater than those of single-phase CBO and g-C3N4, respectively. Three cycles of experiments demonstrated that the degradation efficiency of CBO/CN/RGO-6% composites remained above 88% for RhB, which fully proved that the CBO/CN/RGO-6% composites possessed good chemical stability. Based on its excellent photocatalytic performance and good stability, CBO/CN/RGO-6% is expected to be the preferred material for environmental wastewater treatment.  相似文献   

14.
以三聚氰胺为原料,采用梯度升温热解法制备了石墨状氮化碳(g-C_3N_4),采用XRD、XPS、FTIR、SEM及UV-Vis、PL等技术手段对氮化碳材料的微观结构和光学性能进行了表征,并分析其光解水产氢性能。结果表明:采用梯度升温热解法制备的g-C_3N_4结构良好;620°C才开始快速分解,对热稳定性良好;几乎不溶于常见试剂,化学稳定性较好;在400~550 nm的可见光波长范围内对可见光有着明显吸收,禁带宽度达到2.42 e V,具有较高的光催化分解水制氢能力(18.95μmol/h).  相似文献   

15.
16.
《Ceramics International》2020,46(14):22683-22691
In order to overcome the problem of low photocatalytic rate of g-C3N4, the 3D FexS1-x/g-C3N4 heterojunction was prepared via a simple one-pot solid method. The X-Ray Diffraction (XRD) and scanning electron microscope (SEM) results demonstrated that the FexS1-x/g-C3N4 heterojunction was established and a g-C3N4 nanosheet was tightly bound to FexS1-x. Compared with g-C3N4 samples, FexS1-x coupling resulted in substantial enhancement of visible light absorption, moreover, the bandwidth of heterojunction was also expanded. In addition to effectively degrading RhB and reducing Cr(VI), the redox performance of FexS1-x/g-C3N4 was also increased in the Cr(VI)/RhB mixed system. Based on a variety of experimental results, the enhanced synergistic photocatalytic activity of the 3D FexS1-x/g-C3N4 heterojunction was attributed to enhancement of the separation of e- and h+ in FeS2, which resulted from the effective conversion of FeS into FeS2 under UV-light irradiation. The type II heterojunction structure that was produced via one-pot solid fabrication also inhibited the recombination of electron/hole pairs. FexS1-x doping and heterojunction building improve the photocatalysis capacity of g-C3N4 and broaden the visible-light response of pure g-C3N4.  相似文献   

17.
张春灵 《能源化工》2022,43(1):14-18
采用热处理法合成了g-C3N4,通过光照沉积法将MoS2原位沉积到g-C3N4表面的活性位点,制备了MoS2/g-C3N4复合光催化剂,采用XRD、XPS和BET对MoS2/g-C3N4复合光催化剂的结构进行了表征:MoS2负载到g-C3N4表面,且未改变g-C3N4的晶体结构,同时具有较大的比表面积.考察了MoS2负...  相似文献   

18.
19.
《Ceramics International》2020,46(9):12933-12941
The construction of sandwich structured binary composite can enlarge its specific surface and strengthen the contact of binary interface. This can enhance H2 generation efficiency of the photocatalyst. In this study, two-step strategy for the preparation of novel sandwich-structured g-C3N4/WS2 is proposed. Step one is hydrothermal process producing the layered WO3, which is used as the precursor for monolayer WS2. While step two involves one-pot calcination process that generates sandwich structured g-C3N4/WS2. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), Brunauer Emmett Teller method (BET), and transmission electron microscopy (TEM) are employed to characterize the composition, structure and morphology of g-C3N4/WS2. Photocatalytic H2 generation tests show that the optimal H2 generation rate of g-C3N4/WS2 is 599.7 μmol h-1 g-1 (20 mg of photocatalyst), which is about 25 times higher than that of bare g-C3N4. Moreover, UV–vis diffuse reflectance spectroscopy (UV–vis DRS), photoluminescence (PL) and electrochemical tests are employ to establish possible mechanism of photocatalytic H2 evolution in sandwich-structured g-C3N4/WS2.  相似文献   

20.
Hydrogen production by photolysis of water by sunlight is an environmentally-friendly preparation technology for renewable energy. Graphitic carbon nitride (g-C3N4), despite with obvious catalytic effect, is still unsatisfactory for hydrogen production. In this work, phosphorus element is incorporated to tune g-C3N4's property through calcinating the mixture of g-C3N4 and NaH2PO2, sacrificial agent and co-catalyst also been supplied to help efficient photocatalytic hydrogen production. Phosphorus (P) doped g-C3N4 samples (PCN-S) were prepared, and their catalytic properties were studied. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and ultraviolet diffuse reflection (UV-DRS) were used to study their structures and morphologies. The results show that the reaction rate of PCN-S is 318 μmol·h-1·g-1, which is 2.98 times as high as pure carbon nitride nanosheets (CN) can do. Our study paves a new avenue, which is simple, environment-friendly and sustainable, to synthesize highly efficient P doping g-C3N4 nanosheets for solar energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号