首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gadolinium zirconate (GZ) is an attractive material for thermal barrier coatings (TBCs). However, a single layer GZ coating has poor thermal cycling life compared to Yttria Stabilized Zirconia (YSZ). In this study, Solution Precursor High Velocity Oxy-Fuel (SP-HVOF) thermal spray was used to produce a double layer GZ/YSZ TBC and compared the thermal cycling performance with the single layer YSZ TBC. The temperature behaviour of the solution precursor GZ was studied, and single splat tests were carried out to obtain an optimised spray parameter. In thermal cycling tests, the single-layer YSZ reached 20 % failure at 85 ± 5 cycles, whereas the double-layer GZ/YSZ was at 70 ± 15 cycles. The single-layer failed at the topcoat/TGO interface, whereas the double-layer failed at GZ/YSZ interface and topcoat/TGO interface. Moreover, Gd diffusion occurred near the GZ/YSZ interface, resulting in porosities in the GZ layer.  相似文献   

2.
During the last decade, Suspension Plasma Spraying (SPS) attracted a lot of interest as an alternative process to produce columnar Thermal Barrier Coatings (TBCs). In this study, columnar TBCs were deposited with SPS. After spraying, samples were isothermally annealed at 1373 K for 1 h, 3 h, 10 h and 50 h, respectively. Microstructures and mechanical properties of the ceramic coatings were investigated as a function of annealing time. Annealing resulted in healing of micro-cracks, coarsening of pores, growth of domain size, companied with a decrease of porosity within columns. The change of coating microstructure led to change of mechanical properties. In addition, residual stress in SPS coatings was also investigated. Furthermore, as-sprayed coatings and pre-annealed coatings were subjected to burner rig tests. Short time pre-annealing allowed to enhance thermal cycling lifetime of such SPS coatings. The thermal cycling results were related to microstructure modifications of coatings.  相似文献   

3.
The microstructure of the ceramic topcoat has a great influence on the service performance of thermal barrier coatings (TBCs). In this study, conventional layered-structure TBCs, nanostructured TBCs, and novel-structured TBCs with a unique microstructure were fabricated by air plasma spraying. The relationship between the microstructure and properties of the three different TBCs was analysed. Their thermal insulation ability, sintering resistance, and durability were systematically evaluated. Additionally, their failure modes after being subjected to two kinds of thermal shock tests were analysed. The results revealed that the novel-structured TBCs had remarkably superior performances in all the examined aspects. The thermal conductivity of the novel-structured TBCs was significantly lower than those of the conventional and nanostructured TBCs both in the as-sprayed state and after thermal treatment for 500 h at 1100 °C. The macroscopic elastic modulus of the novel-structured TBCs after sintering at 1300 °C for 100 h was similar to those of the conventional and nanostructured TBCs in the as-sprayed state. During both a burner rig thermal shock test and a furnace cyclic oxidation test, the thermal shock lifetime of the novel-structured TBCs was much longer than those of the conventional and nanostructured TBCs. This study has demonstrated novel-structured plasma-sprayed TBCs with high thermal insulation ability and high durability.  相似文献   

4.
Porosity is a key parameter on thermal barrier coatings, directly influencing thermal conductivity and strain tolerance. Suspension high velocity oxy-fuel (SHVOF) thermal spraying enables the use of sub-micron particles, increasing control over porosity and introducing nano-sized pores. Neutron scattering is capable of studying porosity with radii between 1 nm and 10 μm, thanks to the combination of small-angle and ultra-small-angle neutron scattering. Image analysis allows for the study of porosity with radii above ~100 nm. For the first time in SHVOF 8YSZ, pore size distribution, total porosity and pore morphology were studied to determine the effects of heat treatment. X-ray diffraction and micro-hardness measurements were performed to study the phase transformation, and its effects on the mechanical properties. The results show an abundant presence of nano-pores in the as-sprayed coatings, which are eliminated after heat treatment at 1100 °C; a transition from inter-splat lamellar to globular pores and the appearance of micro-cracks along with the accumulation of micro-strains associated with the phase transformation at 1200 °C.  相似文献   

5.
Suspension plasma spraying (SPS) is ideally suited to produce porous or dense columnar, strain-tolerant thermal barrier coatings (TBCs) and also offers the possibility of producing other microstructures such as feathery and dense vertically cracked coatings. The specific properties of the TBC are significantly influenced by the formed microstructure, that is, affected by feedstock material and process parameters. In this work, the effects of various process parameters in the SPS process are investigated. It was found that the suspension feed rate has a significant effect on the microstructure, especially on the column density of the coating, whereas the suspension solids content mainly affects the coating porosity. Additionally, the surface roughness and topography of the bond coat are crucial for the formation of columnar coatings and were therefore investigated. Despite comparable roughness values for as-sprayed bond coats for high velocity oxy fuel and vacuum plasma spray produced coatings, the surface structures differ significantly from each other and affect the microstructure of the deposited topcoat. Characterization of mechanical properties by means of micro-indenter can be suitable for columnar coatings to determine Young's modulus within a column. However, due to the heterogeneity of the coating, the method is not suitable to describe the mechanical properties of the topcoat.  相似文献   

6.
《Ceramics International》2016,42(13):14299-14312
As one of the promising methods that can be employed to fabricate high-performance thermal barrier coatings (TBCs), suspension plasma spraying (SPS) or solution precursor plasma spraying (SPPS) has received significant attention in academic research. Enhanced performances have been shown in the SPS-/SPPS-coatings due to their special microstructures, such as uniformly distributed micro-pores, vertical cracks or columnar structures. Since there are more complexities than conventional plasma spraying methods, many works have been devoted to study the mechanism and properties of SPS-/SPPS-coatings during the past decades. In this work, the latest development of SPS or SPPS is reviewed in order to discuss some key issues in terms of preparation of suspension or solution precursor, injection mode of liquid phase, interaction between liquid and plasma jet, microstructure of as-sprayed coatings and corresponding deposition mechanism. Meanwhile, the potential application of SPS or SPPS in some new-type TBCs is introduced at the end of this paper.  相似文献   

7.
《Ceramics International》2015,41(8):9972-9979
Double-layer thermal barrier coatings (TBCs), including a top ZrO2 layer and an inner CoNiCrAlY layer, were deposited on nickel-based superalloy using supersonic atmospheric plasma spraying (SAPS). Thermal shock resistance of the TBCs between 1200 °C and room temperature was investigated. After thermal shock test, the adhesive strength of the coatings was evaluated through scratch test. The SAPS–TBCs present good thermal shock resistance, exhibiting only 0.26% mass gain up to 150-time thermal cycling. Before thermal cyclic treatment, SAPS–TBCs exhibited a strong adhesion with the absence of the thermally grown oxide (TGO) between out and inner layer. With the increasing of thermal cycles, the TGO layer was formed and its thickness firstly increased and then dropped down. The critical load fell down by about 32% for topcoat–bondcoat adhesion (up to 50 cycles) and 35% or so for TBCs–substrate adhesion (up to 150 cycles) compared to the counterpart of as-sprayed specimens. The strain introduced by the existence of TGO and mixed oxides resulted in a varied adhesion for TBCs on nickel-based alloy during thermal cycling.  相似文献   

8.
Thermal exposure would compromises the compliance and thermal insulating performance of thermal barrier coatings (TBCs). However, most publications were based on free-standing coatings in which the stress resulting from substrate is essentially different from TBCs on superalloy substrate. In this paper, the constrained effect of substrate on the ceramic top-coat of plasma sprayed lamellar TBCs was investigated. Results showed that the structural changes evolve from micro-scale to macro-scale during thermal exposure. In a relatively shorter thermal exposure stage, the inter-splat pores became narrowed, whereas the intra-splat cracks became widened. Consequently, the healing kinetics of inter-splat pores was much faster than that of the intra-splat cracks. In a relatively longer thermal exposure stage, some macroscale cracks appeared in coating surface owing to the gradually stiffening coatings. As a result, the microscale intra-splat cracks near the macroscale cracks were healed rapidly. In brief, the substrate constraint induced structural changes were stage sensitive.  相似文献   

9.
The thermal insulating performance of plasma-sprayed thermal barrier coatings (PS-TBCs) depends dominantly on inter-splat pores, which would be inevitably healed during high temperature exposure. The sintering kinetics of TBCs appears to be highly stage-sensitive. However, the ultrafast sintering kinetics during the initial sintering stage is not yet well understood. In this study, the sintering behavior of PS-TBCs was investigated in a scale-progressive (from nano- to micro-scale) way. Moreover, a novel healing mechanism suitable for lamellar TBCs was proposed based on a combined-effect of material and pore structure. Regarding the changing behavior of material, nano-scale roughening can be found at the as-deposited smooth pore surface after thermal exposure. Regarding the 2D featured inter-splat pores, the roughening behavior facilitates multiple contacts between the counter-surfaces of inter-splat pores. As a result, micro-scale bridge-connection can be observed at the healed parts. This multiple contacts mechanism caused by scale-progressive healing behavior significantly accelerated the matter transfer, resulting in ultrafast sintering kinetics at the initial sintering stage.  相似文献   

10.
Thermal barrier coatings (TBCs) fabricated by suspension plasma spraying (SPS) have shown improved performance due to their low thermal conductivity and high durability along with relatively low production cost. Improvements in SPS TBCs that could further enhance their lifetime would lead to their widespread industrialisation. The objective of this study was to design a SPS TBC system with optimised topcoat microstructure and topcoat–bondcoat interface, combined with appropriate bondcoat microstructure and chemistry, which could exhibit high cyclic lifetime. Bondcoat deposition processes investigated in this study were high velocity air fuel (HVAF) spraying, high velocity oxy fuel spraying, vacuum plasma spraying, and diffusion process. Topcoat microstructure with high column density along with smooth topcoat–bondcoat interface and oxidation resistant bondcoat was shown as a favourable design for significant improvements in the lifetime of SPS TBCs. HVAF sprayed bondcoat treated by shot peening and grit blasting was shown to create this favourable design.  相似文献   

11.
In this study, Inconel 738 LC superalloy coupons were first sprayed with a NiCoCrAlY bond coat and then with a ceria and yttria stabilized zirconia (CYSZ) top coat by air plasma spraying (APS). After that, the plasma sprayed CYSZ thermal barrier coatings (TBCs) were treated using a Nd:YAG pulsed laser. The effect of laser glazing on the microstructure of the coatings was investigated. The microstructures and surface topographies of both as-sprayed and laser glazed samples were investigated using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The phases of the coatings were analyzed with X-ray diffractometry (XRD). The microstructural analysis results revealed that laser surface glazing of ceramic top coat reduced the surface roughness considerably, eliminated the surface porosities and produced a network of continuous cracks perpendicular to the surface. XRD patterns also showed that both as-sprayed and laser glazed top coats consisted of nonequibrium tetragonal (T′) phase.  相似文献   

12.
《Ceramics International》2017,43(14):10955-10959
Ba(Mg1/3Ta2/3)O3 (BMT) powders were synthesized by the solid state reaction method. BMT thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying (APS). The phase composition and microstructure of the BMT coatings were characterized. The thermal cycling behavior of the BMT coatings was investigated by the water quenching method from 1150 °C to room temperature. The results reveal that BMT powders have an ordered hexagonal perovskite structure, whereas the as-sprayed coating of BMT has a disordered cubic perovskite structure because of the different degree of structural order for different treatment conditions. During thermal cycling testing, the entire spalling of coatings occurred within the BMT coating near the bond coat. This is attributed to the following reasons: (1) the growth of a thermally grown oxides (TGO) layer, which leads to additional stresses in the coatings; (2) the coefficient of thermal expansion mismatch between the BMT coating and bond coat, which develops enormous stress in the coatings; (3) the precipitation of Ba3Ta5O15 due to the evaporation of MgO during the spraying process, which changes the continuity of the coatings.  相似文献   

13.
The effect of topcoat properties on the tendency of painted materials to blistering was studied. Six topcoats were applied on identical panels of hot-dip galvanized steel painted with a polyester primer. The tendency to blistering was assessed under the conditions of permanent condensation in a Q-panel condensation test at 60 °C. Internal tensile stress and stress development in organic coatings during temperature and relative humidity cycling were investigated by the cantilever curvature method. Although blisters originated from the metal/polymer interface, the extent of blistering was strongly influenced by the topcoat. Available data suggest that it may increase with the coating thickness, glass transition temperature (Tg) and thermal expansion properties. Connection was found between the internal tensile stress formed in topcoats during the paint film preparation and the extent of blistering. A hypothesis that stress-assisted interfacial bond hydrolysis was responsible for blister initiation is proposed. Other experiments suggested that local paint buckling over non-adherent sites can be caused by plastic deformation of the paint due to relief of compressive stress generated at elevated temperature or by ingress of water.  相似文献   

14.
环氧改性有机硅耐高温防腐涂料的研制   总被引:1,自引:0,他引:1  
以环氧改性有机硅树脂作为漆基,制备了磷酸锌底漆、云母氧化铁中间漆以及不同颜色的面漆,研究了不同漆膜的耐热性以及以磷酸锌底漆加云母氧化铁中间漆复配不同颜色面漆所得复合涂层的耐热性和耐蚀性。结果表明,以磷酸锌底漆、云母氧化铁中间漆和氧化铬绿面漆复配所得的涂层具有较好的耐高温防腐蚀性能,该复合涂层在350°C烘烤3h后,耐冲击强度≥40kg·cm,附着力≤2级,柔韧性≤2mm。  相似文献   

15.
《Ceramics International》2016,42(10):12172-12179
Two kinds of segmentation-crack structured YSZ thick thermal barrier coatings (TTBCs) were deposited by suspension plasma spraying (SPS) and atmospheric plasma spraying (APS) with nano-based suspension and agglomerated particles, respectively. The phase composition, microstructure evolution and failure behavior of both TBCs before and after thermal shock tests were systematically investigated. Microstructure of the APS coating exhibits typical segmentation-crack structure in the through-thickness direction, similar with the SPS coating. The densities of segmentation-crack in APS and SPS coatings were about 3 cracks mm−1 and 4 cracks mm−1, respectively. The microstructure observation also showed that the columnar and equiaxed grains existed in the SPS coating. As for the thermal shock test, the spallation life of the APS TTBCs was 146 cycles, close to that of the SPS TTBCs (166 cycles). Failure of the APS coating is due to the spallation of fringe segments and splats.  相似文献   

16.
Boron nitride nanoplatelets (BNNPs) with excellent mechanical properties were introduced into HA coatings fabricated through plasma spray in this research. SEM observation and Raman results revealed the added BNNPs retained their original structure even after harsh process and distributed homogeneously in the as-sprayed coatings. As compared with the monolithic HA coating, a 2.0?wt%BNNP/HA coating exhibited significant improvement (~ 40.3%) in fracture toughness and moderate enhancement (~ 20.0%) in indentation yield strength. Synergetic strengthening and toughening mechanisms which are operative through splat boundaries and individual splats were proposed. At splat boundaries, these embedded BNNPs induced stronger adhesion between the adjacent splats to resist splat sliding, which is evident from the fact that the calculated inter-splat friction force of an as-sprayed BNNP/HA coating was increased by ~7.3% at 2.0% BNNP weight fraction. Within splats, toughening mechanisms such as BNNP pullout, crack bridging by both anchored BNNPs and nanosized HA grains, crack deflection and crack propagation arrested by the embedded BNNPs were observed to improve toughness. Moreover, thermal mismatch between HA matrix and BNNPs during cooling process after plasma spray would induce the pre-existing dislocations formed around these BNNP nanofillers, which was assumed to hold out the effect of Orowan-type strengthening within splats.  相似文献   

17.
The melting index of particle was measured to quantitatively characterize the spraying parameters of as-sprayed YSZ coatings. Moreover, new and reliable representation of melting index was achieved, using in-flight particle temperature and velocity. The prediction of microstructure features, such as total porosity and spheroidal porosity of as-sprayed coatings, could be available by the quantitative relationship between melting index and porosity. Based on the real microstructure characteristics, finite element models were generated to simulate heat transfer and calculate thermal conductivity of coatings. The large deviation between the experimental thermal conductivity and simulation results was attributed to the influence of microcracks, which was not shown in as-analyzed images due to resolution limit. Taking all the effects of microcracks and porosity into account comprehensively, the calculation model of thermal conductivity was established with the calculated error lower than 10%.  相似文献   

18.
A self-healing thermal barrier coating (TBC) system is manufactured by air plasma spraying (APS) and tested by thermal cycling. The ceramic topcoat in the self-healing APS TBC system consists of an yttria stabilised zirconia (YSZ) matrix and contains self-shielding aluminium containing MoSi2 healing particles dispersed close to the topcoat/bond coat interface. After spraying the healing particles the material was annealed to promote the formation of an oxygen impermeable Al2O3 shell at the MoSi2-TBC interfaces by selective oxidation of the aluminium fraction. The samples were subsequently thermally cycled between room temperature and 1100°C. The study focussed on the spontaneous formation of the Al2O3 shell as well as the subsequent damage evolution in the APS produced TBC during thermal cycling. Experimental evidence showing characteristic signs of crack healing in the topcoat is identified and analysed. The study shows that while the concept of the self-healing APS TBCs containing self-shielding MoSi2 particles is promising, future study is needed to improve the protectiveness of the Al2O3 shells by further tailoring the aluminium content in the MoSi2 and the particle shape to avoid the premature oxidation of the healing particles and maximise crack healing efficiency.  相似文献   

19.
Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. Transmission electron microscopy, scanning electron microscopy, and X-ray diffraction were carried out to analyze the as-sprayed coatings and powders. Mercury intrusion porosimetry was applied to analyze the pore size distribution. Laser flash technique and differential scanning calorimetry were used to examine the thermophysical properties of the nanostructured coatings. The results demonstrate that the as-sprayed nanostructured zirconia coatings consist of the nonequilibrium tetragonal phase. The microstructure of the nanostructured coatings includes the initial nanostructure of powder and columnar grains. Moreover, micron-sized equiaxed grains were also exhibited in the nanostructured coatings. Their evolution mechanisms are discussed. The as-sprayed nanostructured zirconia coating shows a bimodal pore size distribution, and has a lower value of thermal conductivity than the conventional coating.  相似文献   

20.
《Ceramics International》2019,45(14):16948-16962
To ascertain the crack growth behavior and coalescence mechanism in thermal barrier coatings (TBCs) is beneficial for understanding the failure of TBCs and proposing the probable optimization methods. In this work, a novel lamellar structure model with real interface morphology is developed to explore the crack growth behavior and the failure mechanism of TBCs during thermal cycling. Three typical defects which include pore, inter-splat crack, and intra-splat are incorporated in the model. To simulate the oxidation process of the bond coat (BC) realistically, The oxidation growth process is simulated via changing the BC properties to thermally grown oxide (TGO) properties layer by layer. The effects of the lateral growth strain distribution through TGO thickness on the stress states are executed. Moreover, the influences of BC creep on the crack growth and coating lifetime are further elaborated. The results show that the larger the lateral growth strain gradient, the smaller the residual tensile stress. The irregular interface morphology results in the redistribution of residual stresses. Although the pores and cracks can alleviate the tensile stress near the valley, large stress concentration will occur near them. At the early phase of thermal cycling, the cracks grow steadily. After more cycles, the cracks propagate rapidly and merge with others. The simulated delamination path is in agreement with the experiment results. Not only does BC creep change the crack coalescence mechanism, it also decreases the thermal cyclic lifetime of TBCs. The coating optimization method proposed in this study provides another option for developing advanced TBCs with longer lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号