首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
In this study, a series of cyclic triaxial tests were conducted to study the accumulated strain of coarse-grained soil reinforced with geogrids, and the effect of the number of geogrid layers, confining pressure and cyclic stress amplitude was investigated in detail. The test results show that the final accumulated axial strain of the soils reinforced with geogrids is less than that without reinforcement, and less accumulated axial strain is generated for the specimens with more geogrid layers under identical cyclic loading. The results also show that a higher confining pressure or a lower cyclic stress amplitude yields less accumulated axial strain for the reinforced soils. Furthermore, the plastic shakedown limits are determined by the criterion proposed by Chen et al. It indicates that the plastic shakedown limit increases significantly when one layer of geogrid is incorporated into the specimen and then tends to level off with a continuous increase in the number of geogrid layers. Moreover, a higher confining pressure yields a higher plastic shakedown limit for the soils reinforced with geogrid. The results demonstrated that the use of geogrid can be an effective method to reduce the accumulated deformation of subgrade filling materials under high-cycle traffic loading.  相似文献   

2.
Numerical simulation of the deformation behaviour of multi‐layered geogrid‐reinforced embankments on pile foundations under static and cyclic loading. Embankments for traffic constructions above soft soil are often founded on piles and geogrids are inserted at the bottom of the embankment. In the framework of present design procedures the cyclic (dynamic) traffic loads are considered in a very simplified manner. They are replaced by a static load with a magnification factor. The established model perception for static loading is a redistribution of stress due to arches in the embankment and tensile stress in the geogrids. However it has to be expected that the load bearing and deformation behaviour of such soil structures will change during the life time of the structure (millions of cycles). The cycles cause an accumulation of deformations and changes of stresses in the soil. This may cause a large destruction of the arches and may lead to unexpected settlements. Numerical strategies and constitutive models for the investigation of the behaviour of soils under high‐cyclic loading using finite element method were recently developed. This paper presents the results of such calculations of multi‐layered geogrid‐reinforced embankments on soft soil for the 2D case. The results show that, depending on the position of the geogrids in the embankment, their contribution is unequally to the bearing behaviour and that the stress arches will actually be destroyed under cyclic loading.  相似文献   

3.
Geogrids have been commonly used in reinforced soil structures to improve their performance. To investigate the geogrid reinforcement mechanisms, discrete element modelling of unreinforced and geogrid reinforced soil foundations and slopes was conducted under surface strip footing loads in this study. For unreinforced and reinforced soil foundations, the numerically obtained footing pressure-settlement relationships were validated by experimental results from the literature. In the numerical modelling of unreinforced and reinforced soil slopes, identical models and micro input parameters to those used in the numerical modelling of unreinforced and reinforced soil foundations were used. The geogrid reinforcing effects under strip footing loads were visualised by the qualitative contact force distributions in the soil structures, as well as the qualitative and quantitative tensile force distributions along the geogrids. In addition, the qualitative displacement distributions of soil particles in the soil structures and the quantitative vertical displacement distributions along soil layers/geogrids also indicated the geogrid reinforcing effects in such practical reinforced soil structures. The discrete element modelling results visualise and quantify the load transfer and spreading behavior in geogrid reinforced soil structures, and it provides researchers with an improved understanding of geogrid reinforcing effects at microscopic scale under strip footing loads.  相似文献   

4.
The thickness of the base plays a crucial role in the stability of pavements and the lack of availability of good quality aggregates is a major concern in India and other countries. Loading on top of the base plays a crucial role in the design of pavements. Usually, the design of the pavement is done for standard axle load, however, in the field, in some of the cases, the vehicles are overloaded which results in a higher wheel load on the pavements. The current paper examines the performance of geogrid reinforced unpaved sections at higher stresses with the primary objective of reducing the thickness of base layer required in the field. Experimental studies were carried out using repeated plate load tests to obtain the optimum depth of placing the geogrid in granular base layer to achieve maximum reduction in rutting of pavement. Resilient deformation behavior of both reinforced and unreinforced sections are obtained and these values are utilized to predict the resilient modulus of the base sections. The paper also discusses the reduction in permanent deformation by the introduction of geogrid. Rut depth reduction studies were carried out in order to compare the performance of reinforced and unreinforced sections. The role played by the reinforcement in reducing the strains on top of the subgrade is studied in detail. A comparison is also carried out to understand the pressure distribution along the base layer and role played by the geogrids in reducing the pressure on the subgrade. Further, values of stress distribution angles were obtained for reinforced and unreinforced sections. It is evident from the studies that geogrids contributed to improved performance as well as reduction in thickness of the aggregate layer.  相似文献   

5.
This paper presents the results of laboratory scale plate load tests on transparent soils reinforced with biaxial polypropylene geogrids. The influence of reinforcement length and number of reinforcement layers on the load-settlement response of the reinforced soil foundation was assessed by varying the reinforcement length and the number of geogrid layers, each spaced at 25% of footing width. The deformations of the reinforcement layers and soil under strip loading were examined with the aid of laser transmitters (to illuminate the geogrid reinforcement) and digital camera. A two-dimensional finite difference program was used to study the fracture of geogrid under strip loading considering the geometry of the model tests. The bearing capacity and stiffness of the reinforced soil foundation has increased with the increase in the reinforcement length and number of reinforcement layers, but the increase is more prominent by increasing number of reinforcement layers. The results from the physical and numerical modelling on reinforced soil foundation reveal that fracture of geogrid could initiate in the bottom layer of reinforcement and progress to subsequent upper layers. The displacement and stress contours along with the mobilized tensile force distribution obtained from the numerical simulations have complimented the observations made from the experiments.  相似文献   

6.
为了研究动静荷载下,加筋长度及筋材类型变化对加筋土挡墙工作性能的影响,进行了7种工况下的加筋土挡墙模型试验,对比分析了加筋土挡墙的水平土压力、水平土压力系数、墙面水平位移和加载板竖向沉降及筋材应变等参数的发展规律。试验结果表明:动载下加筋土挡墙筋材应变随着加载时间的增长、加筋长度的减小、位置高度的增加而增大,且顶层筋材应变远远大于其他层;加筋长度及筋材横肋的减少明显降低挡墙的承载性能,格栅横肋减少导致挡墙极限承载力降低18% ,加筋长度减少使面板水平位移最大增大了2.2倍;与静载作用下相比,动载下土工格栅的侧向约束作用及网兜效应能够得到更好地发挥。  相似文献   

7.
交通循环荷载下埋地管道性能与防护是当前研究的重点问题,首先针对格栅加筋柔性管道开展试验研究,分析管道埋深H为3D(D为管道外径)时循环荷载水平和频率、首层格栅埋深、长度、层间距和筋材层数对管道力学与变形性能的影响,试验结果表明:首层格栅最佳埋深u为0.4B(B为加载板宽度),最佳层间距ug为0.5B,最佳铺设长度L为5D;增加格栅层数能显著增强土体,从而有效减少管道变形和加载板沉降;提高荷载水平或降低荷载频率使管道变形、加载板沉降和格栅应变整体显著增加;格栅应变随其与加载板中心的距离增加而减小,格栅中心点应变随循环次数增加呈现先增加后减少的趋势。进而,基于有限元数值模拟分析管道埋深H、加载板宽度B和管径D对管道力学性能的影响,数值结果表明增加管道埋深或减小加载板宽度,管道径向变形减小;同等荷载作用下,减小管径时管道径向变形增大,筋材加筋效果减弱,适当增加管道直径,有利于筋材加筋作用的充分发挥,从而减小管道径向变形。  相似文献   

8.
基于最小势能原理的加筋垫层与路堤桩土相互作用研究   总被引:1,自引:0,他引:1  
桩承式加筋路堤由于涉及桩–桩间土–垫层–加筋体的相互作用问题而使其承载机理复杂,适用于分层土的简化计算方法尚需要深入研究。在广义桩–广义土物理模型的基础上引入加筋垫层,考虑桩土荷载传递及加筋体拉伸产生的弹性势能,推导了整个系统的总势能方程,并将其离散化,建立了一个无约束非线性数学规划模型。该数学模型以总势能方程作为目标函数,采用下降迭代算法求解总势能方程的最小值,可求得桩、土、垫层垂直方向上的变形。通过一个未加筋的算例对数学规划模型进行了验证,并结合某堆煤筒仓实际工程对该方法计算的加筋处理效果进行了讨论。  相似文献   

9.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   

10.
马立  马石城 《土工基础》2011,25(5):53-56
土工格栅作为特种土工合成材料的一种,由于将其加入路基土中后能有效降低路基整体沉降和不均匀沉降,已在交通工程中发挥着重要作用.将渐近均匀化理论运用到土工格栅加筋路堤沉降计算中,所得结果与已有实测值对比表明,该法计算土工格栅加筋路堤的沉降是可行的,从而提供了一种计算水平向增强体(土工格栅)复合地基沉降的新方法;该方法与现行沉降计算方法相比,步骤简单,方便实用.此外,分析沉降变形影响因素,可兼顾施工简便性和土工格栅生产工艺要求而得出路堤最佳加筋方案,为工程应用提供理论参考.  相似文献   

11.
《Soils and Foundations》2007,47(3):473-491
A number of previous experimental studies showed that polymer geogrid reinforcement as well as sand exhibit significantly rate-dependent behaviour. The viscous properties of polymer geogrids and Toyoura sand were independently evaluated by changing stepwise the strain rate as well as performing sustained loading and load/stress relaxation tests during otherwise monotonic loading in, respectively, tensile loading tests and drained plane strain compression (PSC) tests. The viscous properties of the two types of material were separately formulated in the same framework of non-linear three-component rheology model. The viscous response of geogrid-reinforced sand in PSC is significant, controlled by viscous properties of geogrid and sand. Local strain distributions in the reinforced sand specimen were evaluated by photogrametric analysis and used to determine the time history of the tensile strain in the geogrid. The time history of tensile load activated in the geogrid during sustained loading of reinforced sand specimen was deduced by analysing the measured time history of geogrid strain by the non-linear three-component model. It was found that the tensile load in the geogrid reinforcement arranged in a sand specimen subjected to fixed boundary loads could decrease with time. In that case, the possibility of creep rupture of geogrid is very low.  相似文献   

12.
基于加筋材料的拉拔试验结果和极限平衡理论,针对具体边坡工程进行了不同加筋方案的计算与分析,对比了计算模型和设计方法的适用性,给出了满足边坡稳定条件的最佳设计方案。计算结果表明:采用改进瑞典法或荷兰法的计算结果相近且较原瑞典法有明显的提高,更能体现加筋效果;地震效应和地下水对加筋结构有较大影响;水利法应用于稳定地基上加筋边坡目的性强,能获得满足稳定性条件的合理布筋量;当地下水位较高时,筋材宜通铺。双层加筋效果较单层加筋有明显提高,但并非后者的简单叠加。单层加筋时,铺设位置对于边坡稳定性的影响有限,若铺设于坡身更能减少布筋量,降低造价。对比分析还表明,无论采用何种加筋方式,加筋前后的最危险滑弧位置均会发生改变,后者会向边坡中心和地基深处发展,对于提高其稳定性有明显作用。  相似文献   

13.
为研究多层加筋垫层刚性桩网复合地基的承载特性,将设置有多层土工格栅的加筋垫层视为大挠度薄板进行分析,运用层合板理论,模拟多层土工格栅与碎石垫层之间的相互作用,建立加筋垫层抗弯刚度矩阵的计算方法。考虑刚性桩网复合地基的三维应力和位移边界条件,根据静力平衡条件,建立加筋垫层应力函数和挠度微分控制方程,并利用伽辽金方法进行求解。在此基础上,利用Winkler地基梁理论和大挠度薄板理论对桩土应力比和格栅拉力进行计算。最后,运用实际工程对计算方法进行验证,并综合分析格栅总层数、铺设间隔和位置等因素对桩土应力比及格栅拉力的影响。研究结果表明:理论计算结果与实测结果较为吻合;随着格栅总层数的增大,桩土应力比增大而格栅拉力降低,铺设2~3层格栅效率最高;随着铺设格栅间隔和底层格栅距桩帽距离的增大,桩土应力比降低,而格栅拉力增大。  相似文献   

14.
Geogrids, made of polymeric materials, have been used as a construction material for many applications, such as walls, slopes, roads, building foundations, etc. In the past, geogrids were manufactured with apertures in a rectangular or square shape. Recently, geogrids with a triangular aperture shape have been introduced into the market. The new geogrids are manufactured with ribs oriented in three equilateral directions and expected to have a more stable grid structure, which can provide more uniform resistance in all directions. In this study, the numerical software - FLAC was adopted to investigate the responses of geogrids with rectangular and triangular apertures when subjected to a uniaxial tensile load at different directions relative to the orientations of ribs in air. The geogrid ribs were modeled using beam elements jointed rigidly at nodes (i.e., the angle between two adjacent ribs did not change) and subjected to tension in one direction. The numerical results showed that the stress-strain responses of the geogrids were different at different loading directions relative to the orientations of ribs. The effects of aperture shape of geogrid, and elastic modulus and cross-section area of geogrid ribs on the tensile stiffness of the geogrid were also evaluated. The geogrid with triangular apertures had more uniform tensile stiffness and strength distributions than the geogrid with rectangular apertures. An increase of the elastic modulus and cross-section area of the geogrid ribs could increase the stiffness of the geogrid with triangular apertures. The numerical results were verified by experimental data for geogrids with rectangular and triangular apertures.  相似文献   

15.
There have been very few studies on the application of soil-rock mixtures as the backfills of geogrid reinforced soil retaining walls with due concern for their long-term performance and safety. In this study, a 17-m high two-tiered reinforced soil wall backfilled with soil-rock mixture was instrumented for its performance under gravity load after construction. The instrumentation continued for 15 months. It is found that soil-rock mixtures with small rock content (<30%) have the potential to be used as the backfill materials of geogrid-reinforced retaining walls, but special attentions should be given to compaction quality, backfill–geogrid interaction, and installation damage to geogrids. Reinforcement slippage is possible because of the large particles, but it was small in this case and ceased to develop nine months after the end of construction. Compressibility difference between reinforced and unreinforced backfill might led to rotation of the upper tier. Using the estimated soil strength, the predictions of reinforcement loads by the FHWA methods were 100% higher than the estimated ones from measured strains.  相似文献   

16.
A recently completed field study in Iowa showed that many granular shoulders overlie clayey subgrade layer with California Bearing Ratio (CBR) value of 10 or less. When subjected to repeated traffic loads, some of these sections develop considerable rutting. Due to costly recurring maintenance and safety concerns, the authors evaluated the use of biaxial geogrids in stabilizing a severely rutted 310 m tests section supported on soft subgrade soils. Monitoring the test section for about one year, demonstrated the application of geogrid as a relatively simple method for improving the shoulder performance. The field test was supplemented with a laboratory testing program, where cyclic loading was used to study the performance of nine granular shoulder models. Each laboratory model simulated a granular shoulder supported on soft subgrade with geogrid reinforcement at the interface between both layers. Based on the research findings, a design chart correlating rut depth and number of load cycles to subgrade CBR was developed. The chart was verified by field and laboratory measurements and used to optimize the granular shoulder design parameters and better predict the performance of granular shoulders.  相似文献   

17.
Geogrid pullout tests have been regarded as the most direct and effective way to describe the interfacial behavior between geogrid and soil. To investigate the coupled effects of geogrid transverse members and top-loading boundaries on the geogrid-soil interaction, numerical simulations of geogrid pullout tests using the Discrete Element Method (DEM) were carried out in this study. The rigid top boundary was simulated by a rigid wall, while the flexible top boundary was modeled with a string of bonded particles that could rotate and move up and down freely. The coupled effects of geogrid transverse members and top boundary conditions on the geogrid-soil interaction under pullout loads were visualized not only by the force distributions along the geogrids and in the specimens but also by the displacements of soil particles and geogrids. Additionally, the quantitative geogrid force and strain distributions along the geogrids, the lateral force distributions on the front walls, and the vertical displacements of top boundaries also showed the influence of transverse members on the geogrid pullout behavior considering the rigid and flexible top boundaries. The DEM investigation results of this study may provide helpful guidelines for regulating the geogrid pullout test apparatus and methods.  相似文献   

18.
条形荷载作用下加筋土边坡稳定性分析   总被引:4,自引:0,他引:4  
建立了用于模拟和分析3个大型室内足尺加筋与不加筋边坡稳定性的数值计算模型。数值计算采用基于强度折减技术的连续介质快速拉格朗日分析方法,分别对条形荷载下的位移响应、节点位移速度向量、塑性区和剪应变速率分布进行计算,获得3个边坡在条形荷载下的极限承载力和双楔体破坏机制,计算结果与试验结果吻合较好,验证了模型的可行性。在此基础上,对影响边坡稳定性的各主要因素进行分析。研究结果表明,经过格栅加固的边坡承载能力和稳定性明显提高,且随加筋层数、格栅刚度和强度的增加而增大;条形荷载越大或荷载位置离坡顶越近,边坡的稳定性越低;土体强度增大,边坡的稳定性明显增加,但土体摩擦角对安全系数的影响比黏聚力更为敏感;此外,顶层筋材埋深与条基荷载宽度比值大小与边坡的安全性密切相关,其最佳比值随加筋层数不同而改变。  相似文献   

19.
This paper describes laboratory tests on footing constructed on unreinforced and geogrid-reinforced sand with circular a void subjected to a combination of static and repeated loads. The settlement of the footing was measured for up to 5000 cycles of loading and unloading. The variables examined in the testing program include the number of geogrid layers, the location of the void within the soil, the amplitude of cyclic load, and the number of load cycles. The results show that the footing performance due to cyclic loading is better for thicker geogrid reinforced sand with a void than for unreinforced sand with no void. In addition, a critical region was found to exist under the footing, under which a void results in increased footing settlement. Overall, the results indicate that the reinforced soil-footing systems with sufficient geogrid-reinforcement and sufficient void embedment depth behave much more stiffly and are thus capable of handling greater loads with lower settlement than those in unreinforced soil without a void. The undesirable effect of the void on the footing behavior can be eliminated. In addition, the results show that the values of footing settlement increase rapidly during the initial loading cycles; thereafter the rate of settlement is reduced significantly as the number of loading cycles increases.  相似文献   

20.
Contribution to the interaction performance of binder‐stabilized cohesive soil and PVA geogrids. The interaction behaviour between geosynthetics and soils is essential for the stability calculation of geosynthetic reinforced earth. It is important to analyse the parameters which are responsible for the state of failure of the composite construction and evaluate the interaction between the geosynthetic and the soil. Theoretic models are not suitable and not transparent enough to simulate the interaction behaviour out of many reasons. This is why interaction parameters are determined by shear and pull‐out tests. Most of the literatures available for these tests are based on cohesionless soils. Scientific analysis of geogrids embedded in cohesive soils is rare and fragmentary. Furthermore, analysis is almost not present for binder‐stabilized cohesive soils. The growing shortage of satisfactory granular soils with high friction and the availability of local cohesive soils have resulted in an increasing interest for such soils in the last years. This is one of the reasons why many shear and pull‐out tests were conducted at the TU Bergakademie Freiberg with the cooperation of HUESKER Comp. on cement and lime stabilised cohesive soils with high alkali resistant PVA geogrids. A newly developed testing device, which has proved itself with the adaptation of in‐situ boundary conditions and repro ducible test results, was taken into operation for these tests. The test results are very promising. The PVA geogrid tested has very high coefficients of interaction both in the shear and pull‐out mode, with certain synergetic effects occurring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号