首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ZrO2 particle size (55 nm and 113 nm) and borothermal reduction routes (borothermal reduction with water-washing (BRW) and in situ 5 mol% TaB2 solid solution, BRS) on synthesis and densification of ZrB2 were investigated. Irrespective of reduction routes, the use of finer ZrO2 powders as raw materials resulted in finer ZrB2 powders. Compared to the powders derived from BRS, the powders derived from BRW had smaller particle size with higher oxygen content, especially the powders synthesized with finer ZrO2. Irrespective of ZrO2 particle size, the oxygen contents of ZrB2 powders prepared by the BRS route were similar. Because of the high oxygen content, the ZrB2 ceramics synthesized by BRW with finer ZrO2 demonstrated the lowest relative density (90.5%), which resulted in the lowest Vickers’ hardness (14.2 ± 0.9 GPa). Due to the low oxygen content and small particle size of ZrB2 powders, fully dense ZrB2 ceramics (relative density: 99.6%) with highest Vickers’ hardness (16.0 ± 0.2 GPa) were achieved by BRS with finer ZrO2 powders.  相似文献   

2.
The in-situ exothermic reactions between ZrC0.8, B4C and Si have assisted densification and allowed to obtain fully dense ZrB2-31 wt.%SiC ultra-high temperature ceramics within 6 min at 1750 °C. The use of zirconium carbide instead of metallic zirconium in the green body obviated the possibility of in-situ SHS process and allowed to apply the pressure at low temperatures. The latter provided a first densification stage just above 1050 °C. A slight carbon excess was created in the green body to preserve the carbon nanotubes. The developed reactive hot pressing route (1830 °C, 3 min, 30 MPa) has been successfully used to obtain ZrB2-SiC ceramics containing 8 vol.% of multi-wall carbon nanotubes (MW-CNT). The carbon nanotubes survived the thermal cycle and could be clearly observed in the sintered ceramics. The CNT addition improved the fracture toughness of the composite from 4.3 MPa m1/2 for ZrB2-31 wt.%SiC to 6.8 MPa m1/2 for ZrB2-29 wt.%SiC-CNT.  相似文献   

3.
In this work, pure ZrB2-SiC composite powders were obtained using ZrO2, SiO2, B4C and carbon black as raw materials via a boro/carbothermal reduction (BCTR) reaction process at 1500 °C for 2 h in vacuum condition. Based on this finding, porous ZrB2-SiC ceramics were in-situ synthesized via a novel and facile boro/carbothermal reaction process templated pore-forming (BCTR-TPF) method. The phase composition, linear shrinkage, and pore size distribution were also methodically studied. Results show that the porous ZrB2-SiC ceramics with controllable porosity of 67–78%, compressive strength of 0.2–9.8 MPa and thermal conductivity of 1.9–7.0 W·m−1K−1 can be fabricated by varying of ZrO2 and B4C particle sizes. The formation of ZrB2 grains was controlled via solid-solid and solid-liquid-solid growth mechanisms, the growth process of SiC grains was mainly regulated by solid-solid, vapor-vapor and vapor-solid growth mechanisms during the overall synthesis process. Finally, the pore-forming mechanism of porous samples prepared via the BCTR-TPF method was gases combined with template pore-forming mechanism, i.e., B4C and carbon black acted as pore-forming templates, and gaseous products generated in the BCTR reaction were also applied as gas pore-forming agent.  相似文献   

4.
ZrB2-MeC and ZrB2-19 vol% SiC-MexCy where Me=Cr, Mo, W were obtained by pressureless sintering. The capability to promote densification of ZrB2 and ZrB2-SiC matrices is the highest for WC and lowest for Cr3C2. The interaction between the components results in the formation of new phases, such as MeB (MoB, CrB, WB), a solid solution based on ZrC, and a solid solution based on ZrB2. The addition of Cr3C2 decreases the mechanical properties. On the other hand, the addition of Mo2C or WC to ZrB2-19 vol% SiC composite ceramics leads increased mechanical properties. Long-term oxidation of ceramics at 1500 °C for 50 h showed that, in binary ZrB2-MexCy, a protective oxide scale does not form on the surface thus leading to the destruction of the composite. On the contrary, triple composites showed high oxidation resistance, due to the formation of dense oxide scale on the surface, with ZrB2-SiC-Mo2C displaying the best performance.  相似文献   

5.
Densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) ceramics modified with a complex Zr/Si/O-based additive were studied. ZrB2 ceramics with 5–20 vol.% additions of Zr/Si/O-based additive were densified to >95% relative density at temperatures as low as 1400°C by hot-pressing. Improved densification behavior of ZrB2 was observed with increasing additive content. The most effective additive amount for densification was 20 vol.%, hot-pressed at 1400°C (∼98% relative density). Microstructural analysis revealed up to 7 vol.% of residual second phases in the final ceramics. Improved densification behavior was attributed to ductility of the silicide phase, liquid phase formation at the hot-pressing temperatures, silicon wetting of ZrB2 particles, and reactions of surface oxides. Room temperature strength ranged from 390 to 750 MPa and elastic modulus ranged from 440 to 490 GPa. Vickers hardness ranged from 15 to 16 GPa, and indentation fracture toughness was between 4.0 and 4.3 MPa·m1/2. The most effective additive amount was 7.5 vol.%, which resulted in high relative density after hot-pressing at 1600°C and the best combination of mechanical properties.  相似文献   

6.
《Ceramics International》2017,43(16):13047-13054
Zr-Al-C was in-situ synthesized as a toughening component in ZrB2-SiC ceramics by spark plasma sintering (SPS) ball-milled ZrB2-based composite powders with SiC and graphite powders. The phase composition of Zr-Al-C toughened ZrB2-SiC (ZSA) composite ceramics fabricated through the two-step process (ball milling and SPS) did not change dramatically with varying content of Zr-Al-C which shows a major phase of Zr3Al4C6. With increasing Zr-Al-C content, the fracture toughness of the ZSA ceramics initially increased and then decreased when the content reached 40 vol%. The ZSA ceramic with 30 vol% Zr-Al-C exhibited a maximum fracture toughness value of 5.96 ± 0.31 MPa m1/2, about 22% higher than that of the ZSA ceramic with 10 vol% Zr-Al-C. When the Zr-Al-C content goes beyond 30 vol%, the higher open porosity and component agglomeration led to the relatively lower fracture toughness. Crack deflection and bridging resulted from the weak interface bonding between Zr-Al-C and matrix phases and the weak internal layers of Zr-Al-C crystals, leading to longer crack paths and, hence, the toughened ZSA composite ceramics. Compared to the one-step in-situ synthesis process of Zr-Al-C and the direct incorporation process of synthesized Zr-Al-C grains, the two-step in-situ synthesis process not only led to the more uniform distribution of different components but also resulted in a much larger size of Zr-Al-C grains with a large aspect ratio causing longer crack propagation path as the result of crack deflection and bridging. The larger Zr-Al-C grains combined with the more homogeneous microstructure achieve the most substantial toughening of the ZSA composite ceramics. This work points out a promising approach to control and optimize the microstructure and improve the fracture toughness of ZrB2-SiC composite ceramics by selecting the incorporation process of compound reinforcement components.  相似文献   

7.
This study reviews densification behaviour, mechanical properties, thermal, and electrical conductivities of the ZrB2 ceramics and ZrB2-based composites. Hot-pressing is the most commonly used densification method for the ZrB2-based ceramics in historic studies. Recently, pressureless sintering, reactive hot pressing, and spark plasma sintering are being developed. Compositions with added carbides and disilicides displayed significant improvement of densification and made pressureless sintering possible at ≤2000 °C. Reactive hot-pressing allows in situ synthesizing and densifying of ZrB2-based composites. Spark plasma sintering displays a potential and attractive way to densify the ZrB2 ceramics and ZrB2-based composites without any additive. Young's modulus can be described by a mixture rule and it decreased with porosity. Fracture toughness displayed in the ZrB2-based composites is in the range of 2–6 MPa m1/2. Fine-grained ZrB2 ceramics had strengths of a few hundred MPa, which increased with the additions of SiC and MoSi2. The small second phase size and uniform distribution led to higher strengths. The addition of nano-sized SiC particles imparts a better oxidation resistance and improves the strength of post-oxidized ZrB2-based ceramics. In addition, the ZrB2-based composites showed high thermal and electrical conductivities, which decreased with temperature. These conductivities are sensitive to composition, microstructure and intergranular phase. The unique combinations of mechanical and physical properties make the ZrB2-based composites attractive candidates for high-temperature thermomechanical structural applications.  相似文献   

8.
Graphene derivative materials exhibit excellent mechanical and thermal properties, which have been extensively used to toughen ceramics and improve thermal shock resistance. To overcome the thermal agglomeration of graphene oxide (GO) during heating and drying process, ZrB2-SiC particles decorated GO hybrid foam with uniformly anchored ceramic particles was synthesized by electrostatic self-assembly and liquid nitrogen-assisted freeze-drying process. Densified rGO/ZrB2-SiC ceramics with varying microstructure, thermal physical and mechanical properties were obtained by adjusting the content of decorated ceramic particles. Although the flexural strength of rGO/ZrB2-SiC ceramics have an attenuation compared with that of ZrB2-SiC ceramic, the thermal conductivity, work of fracture and thermal shock resistance are greatly improved. rGO/ZrB2-SiC ceramics exhibit delayed fracture and increasing R-curve behavior during the crack propagation. The novel preparation technology allows for the well dispersion of rGO in ZrB2-SiC ceramics and can be easily extended to other ceramic or metal materials systems.  相似文献   

9.
The design of bioinspired architectures is effective for increasing the toughness of ceramic materials. Particularly, a dual composite equiaxial architecture is ideal for fabricating weak interface-toughened ZrB2-SiC ceramics with isotropic performance. In this paper, ZrB2-SiC-Graphene@ZrB2-SiC dual composite ceramics were synthesized via an innovative processing technique of granulating-coating method. ZrB2-20 vol.% SiC containing 30 vol.% Graphene was selected as weak interface to realize multiscale toughening and improve the thermal shock resistance of ZrB2-SiC ceramic materials. The incorporation of ZrB2-SiC-Graphene weak interface into the ZrB2-SiC matrix improved the damage tolerance and critical thermal shock temperature difference. The design of equiaxial structures moderated the anisotropy of performance in different planes. The graphene sheets incorporated in the ZrB2-SiC-Graphene interface phase played a key role in multiscale toughening, including macroscopic toughening of crack deflection and microcracks, and microscopic toughening of graphene bridging and pull-out.  相似文献   

10.
ZrB2-ZrCx composites were produced using Zr:B4C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4-7 MPa, 1200°C for 60 minutes. X-ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrCx) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B4C composition from 86% to 99%. Microstructural studies on Zr-rich composites showed a reduction in unreacted B4C particles and enriched elongated ZrB2 platelets. Reaction and densification mechanism in 4Zr:B4C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, <40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrCx formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB2-ZrCx composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB2-ZrCx composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2-15 GPa, 265-590 MPa, 2.82-6.33 MPa.m1/2, and 1.43-0.376 × 10−2 mm2/N, respectively.  相似文献   

11.
This research work deals with the investigation of erosive wear of spark plasma sintered ZrB2-SiC composites with variation in angle of incidence (30°, 60°, and 90°), test temperature (room and 800°C) and SiC content (10, 20, and 30 vol.%). Results indicate a large variation in erosion rate from 2.13 to 75.45 mm3/kg with change in angle of incidence, test temperature, and SiC content. Erosion rate decreased with the decrease in angle of incidence, increase in temperature, and increase in SiC content. With increase in SiC content from 10 to 30 vol.%, a maximum reduction of 68% in erosion rate obtained at shallow incidence and room temperature, and a maximum reduction of 78% in erosion rate obtained at shallow incidence and 800°C. SEM-EDS and XRD analyses indicate that formation of B2O3 and SiO2-rich protective surface is responsible for high temperature erosion resistance of ZrB2-SiC composites.  相似文献   

12.
Sintering mechanisms and kinetics were investigated for ZrB2 ceramics produced using reaction hot pressing. Specimens were sintered at temperatures ranging from 1800°C to 2100°C for times up to 120 min. ZrB2 was the primary phase, although trace amounts of ZrO2 and C were also detected. Below 2000°C, the densification mechanism was grain‐boundary diffusion with an activation energy of 241 ± 41 kJ/mol. At higher temperatures, the densification mechanism was lattice diffusion with an activation energy of 695 ± 62 kJ/mol. Grain growth exponents were determined to be ~4.5, which indicated that a grain pinning mechanism was active in both temperature regimes. The diffusion coefficients for grain growth were 1.5 × 10?16 cm4/s at 1900°C and 2.1 × 10?15 cm4/s at 2100°C. This study revealed that dense ZrB2 ceramics can be produced by reactive hot pressing in shorter times and at lower temperatures than conventional hot pressing of commercial powders.  相似文献   

13.
Joining is crucial for ultra-high temperature ceramics (UHTCs) to be used in demanding environments due to the difficulty in manufacturing large and complex ceramic components. In this study, ZrB2-SiC composite UHTCs parts were joined via Ni foil as filler, and the mechanical properties and oxidation behaviour of the fabricated ZrB2-SiC/Ni/ZrB2-SiC (ZS/Ni/ZS) joint were investigated. Firstly, dense ZrB2-SiC composites were prepared from nano-sized powders by spark plasma sintering (SPS). The ZrB2-SiC parts were then joined using SPS. Furthermore, the elastic modulus, hardness, shear strength and high temperature oxidation behaviour of the ZS/Ni/ZS joint were examined to evaluate its properties and performance. The experimental results showed that the ZrB2-SiC parts were effectively joined via Ni foil using SPS and the resultant microstructures were free from any marked defects or residual metallic layers in the joint. Although the elastic modulus and hardness in the joining zone were lower than those in the base ZrB2-SiC ceramics, the shear strength of the joint reached ∼161 MPa, demonstrating satisfactory mechanical properties. Oxidation tests revealed that the ZS/Ni/ZS joint possesses good oxidation resistance for a wide range of elevated temperatures (800–1600 oC), paving the way for its employment in extreme environments.  相似文献   

14.
The effect of Hf additions on the thermal properties of ZrB2 ceramics was studied. Reactive hot pressing of ZrH2, B, and HfB2 powders was used to synthesize (Zr1?x,Hfx)B2 ceramics with Hf contents ranging from x = 0.0001 (0.01 at.%) to 0.0033 (0.33 at.%). Room‐temperature heat capacity values decreased from 495 J·(kg·K)?1 for a Hf content of 0.01 at.% to 423 J·(kg·K)?1 for a Hf content of 0.28 at.%. Thermal conductivity values decreased from 141 to 100 W·(m·K)?1 as Hf content increased from 0.01 to 0.33 at.%. This study revealed, for the first time, that small Hf contents decreased the thermal conductivity of ZrB2 ceramics. Furthermore, the results indicated that reported thermal properties of ZrB2 ceramics are affected by the presence of impurities and do not represent intrinsic behavior.  相似文献   

15.
Polymer-derived SiBCN, with superior thermal stability and amorphous activity, was introduced into ZrB2 powders. This sintering aid highly improved the sintering efficiency of ZrB2 ceramics at medium temperature (1000-1600°C), which showed a different service temperature range from that of traditional crystal additives. The microstructure and densification behavior of ZrB2–SiBCN samples were mainly studied. The polymer structural evolution including construction, rearrangement, and crystallization of the amorphous SiBCN network, made a large contribution to the densification of ZrB2 ceramics. The carbothermal reduction of pyrolysis carbon with oxide impurities could not only decrease the oxygen content, but also develop the activity of chemical bonds in SiBCN network. Diffusions and reactions at the interface also benefited the microstructure and consolidation of ZrB2–SiBCN ceramics.  相似文献   

16.
《Ceramics International》2017,43(10):7743-7750
ZrB2 and ZrB2-SiC powders were prepared by a combined sol-gel and boro/carbothermal reduction method, and their oxidation kinetics was studied by using a non-isothermal thermogravimetric technique. The results showed that the Mample power law (n=1) was the most probable mechanism function, and the incorporation of SiC into ZrB2 greatly enhance the latter's oxidation resistance. The oxidation activation energy values of phase pure ZrB2 and ZrB2-SiC powders were respectively 249 and 308 kJ/mol.  相似文献   

17.
The oxidation behavior of four ZrB2-SiC-ZrC compositions with varying ZrC contents (20, 34, 50, and 64 vol.%) was compared to that of ZrB2-SiC. The ceramics were oxidized at 1700 °C in an oxygen-hydrogen torch environment. The liquid oxide on the ZrB2-SiC sample came off from the surface under such an environment. In contrast, the all ZrB2-SiC-ZrC samples maintained the convex oxide on the surface, which consisted of ZrO2 and SiO2. The convex oxide of ZSZ with higher ZrC content was thicker, with the exception of ZrB2-SiC-64vol.%ZrC sample. The ZrB2-SiC-64vol.%ZrC sample formed a ZrO2-rich layer, which was clearly denser than the ZrO2-SiO2. This densification was caused by ZrO2-sintering, and it was specific behavior under the dynamic pressure.  相似文献   

18.
《Ceramics International》2020,46(11):19209-19216
The impact of SiAlON on densification behavior and microstructure of the ZrB2-SiC composite was investigated. ZrB2, SiC, and SiAlON were used as the initial materials to produce ZrB2-SiC composite by hot pressing at 1900 °C. A fully dense composite was obtained having ~99.9% relative density. High-resolution X-ray diffraction (HRXRD) assessment verified the in-situ formation of ZrC, and the presence of residual carbon, SiAlON, and ZrB2 and SiC phases in the as-sintered ceramic. Furthermore, the thermodynamic calculations confirmed the results attained by HRXRD. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized for the microstructural investigation. SEM fractographs indicated the impact of SiAlON on the hindering of grain growth and the formation of flaky phases (graphitized carbon or solidified liquid phase) at the grain boundaries. TEM studies revealed the presence of a transparent glassy phase at the particle interfaces. A significant impact of liquid phase sintering was also affirmed in the clean interfaces.  相似文献   

19.
In order to improve the fracture toughness of ZrB2 ceramics, as-received and heat treated short carbon fiber reinforced ZrB2-based composites were fabricated by hot pressing. The toughening effects of the fibers were studied by investigating the relative density, phase composition, microstructure and mechanical properties of the composites. It was found that the densification behavior, microstructure and mechanical properties of the composites were influenced by the fibers’ surface condition. The heat treated fiber was more appropriate to toughen the ZrB2-based composites, due to the high graphitization degree, low surface activity and weak interfacial bonding. As a result, the fracture toughness of the composites with heat-treated fiber is 7.62 ± 0.12 MPa m1/2, which increased by 10% as compared to the composites with as-received fiber (6.89 ± 0.16 MPa m1/2).  相似文献   

20.
Dense ZrB2-SiC-Al3BC3 ultra-high temperature ceramic composite was fabricated by hot pressing sintering at 1900°C for 1 hour under a pressure of 20 MPa using Zirconium diboride (ZrB2) as the raw material and a powder mixture of SiC, B4C, Al, and carbon as the sintering additive. Al and B4C underwent in situ reaction with carbon powder to produce Al3BC3, which promoted the densification of ZrB2 ceramic. SiC grains were found to be elongated during sintering. The ZrB2-SiC-Al3BC3 composite exhibited excellent mechanical properties, such as high flexural strength of 589 ± 147 MPa and fracture toughness of 7.81 ± 1.09 MPa m1/2. Oxidation behavior of the ZrB2-SiC-Al3BC3 composite was studied in air at 1500°C for 1 hour. A continuous layer of oxides consisting of a mixture of SiO2, Al2SiO5, and Al2O3 was formed on the surface of the ZrB2-SiC-Al3BC3 composite. This layer of oxides efficiently prevented oxygen from diffusing into the specimens during oxidation, which improved the oxidation resistance of the ZrB2 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号