共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
研究了三聚氰胺甲醛磺酸盐(MFS)减水剂的掺加时间对普通硅酸盐水泥浆体在初始120 min的水化时间内流变性能的影响,研究中MFS的后掺时间为0 min、5 min、10 min、15 min、20 min和25 min。检测了在不同减切速率(3~147 s-1)下水泥浆体水化30 min和120 min时的剪切应力和表观粘度。测定了水化120 min后的水泥浆体的Ca2+浓度和化学结合水。结果表明:推迟减水剂的后掺时间降低了水泥浆体在120 min内的屈服应力和表观粘度,减水剂MFS的最佳后掺时间为10~15 min。 相似文献
3.
选用RHEOLAB QC型旋转黏度计,分别测试了内掺水泥质量分数0.0%、1.0%、2.0%与3.0%纳米SiO2的水泥浆体在5℃、20℃、30℃时的稳态流变曲线、静态屈服应力、恒定速率剪切下的表观黏度与剪切应力,系统研究了不同环境温度时纳米SiO2对新拌水泥浆体流变性能的影响.结果表明:随纳米SiO2掺量增加,水泥浆体的动态屈服应力与稠度系数均显著增大;随温度升高,掺纳米SiO2的水泥浆体的稠度系数均增大,纳米SiO2掺量为0%与1.0%的水泥浆体的动态屈服应力增大,而纳米SiO2掺量为2.0%、3.0%的水泥浆体的动态屈服应力基本不变;随纳米SiO2掺量增加,水泥浆体的静态屈服应力与其在10~120 min的增长速率均增大;20℃、30℃时,随纳米SiO2掺量增加,水泥浆体的剪切变稀程度增大;5℃与30℃时,随纳米SiO2掺量增加,水泥浆体的触变指数增大;当纳米SiO2掺量为1.0%时,水泥浆体的活化能低,温度敏感性弱,热稳定性好. 相似文献
4.
5.
研究了水胶比、聚羧酸减水剂(PCE)分子结构、高吸水性树脂(SAP)及阴离子型黏度调节剂(VMA)对砂浆流变性能的影响。结果表明:提升水胶比能降低砂浆的屈服应力和塑性黏度并提高其流动度保持能力。PCE的掺入可显著降低砂浆的屈服应力且PCE侧链的空间位阻作用是一个主要原因。侧链抑制PCE在水泥颗粒表面的吸附。增加PCE侧链长度对水泥浆初始流变性影响较小。SAP通过降低砂浆中自由水含量来提高其屈服应力和塑性黏度,其作用机理与降低水胶比的作用相似。VMA在低掺量下通过桥接作用提高砂浆的屈服应力,但对塑性黏度影响不大;高掺量下,VMA的桥接作用减弱却能大幅提高液相的黏度,因而对砂浆屈服应力的提升作用减弱而大幅提高其塑性黏度。 相似文献
6.
张朝阳喻建伟孔祥明蔡熠 《硅酸盐学报》2020,(5):622-631
研究了水胶比、聚羧酸减水剂(PCE)分子结构、高吸水性树脂(SAP)及阴离子型黏度调节剂(VMA)对砂浆流变性能的影响。结果表明:提升水胶比能降低砂浆的屈服应力和塑性黏度并提高其流动度保持能力。PCE的掺入可显著降低砂浆的屈服应力且PCE侧链的空间位阻作用是一个主要原因。侧链抑制PCE在水泥颗粒表面的吸附。增加PCE侧链长度对水泥浆初始流变性影响较小。SAP通过降低砂浆中自由水含量来提高其屈服应力和塑性黏度,其作用机理与降低水胶比的作用相似。VMA在低掺量下通过桥接作用提高砂浆的屈服应力,但对塑性黏度影响不大;高掺量下,VMA的桥接作用减弱却能大幅提高液相的黏度,因而对砂浆屈服应力的提升作用减弱而大幅提高其塑性黏度。 相似文献
7.
目前,混凝土减水剂主要以聚羧酸和萘系两种为主。聚羧酸减水剂(PCEs)在应用过程中对泥土过于敏感,性能急剧下降,而萘系具有很好的抗泥性,这也是萘系减水剂在砂石含泥量较高的商砼领域一直占据主导地位的重要原因。要在商砼领域大规模推广聚羧酸减水剂,增强其抗泥性是关键所在。利用紫外可见吸收光谱分析手段,研究泥土对不同结构的聚羧酸减水剂的吸附规律,并且研究了聚羧酸减水剂对不同含泥量砂浆的分散性能,实验发现水泥浆显著提升了泥土对聚羧酸减水剂的饱和吸附量,并初步发现短主链、短侧链的聚羧酸减水剂抗泥效果相对较好。 相似文献
8.
9.
随着纳米材料和技术不断发展,关于氧化石墨烯对水泥基材料改性作用的相关研究越来越受到重视.在此背景下,通过Anton Paar Rheolab QC型旋转黏度计研究了氧化石墨烯对新拌水泥浆体流变性的影响,并测试了浆体静态屈服应力、动态屈服应力和黏度系数以及触变环面积.结果表明:相同氧化石墨烯掺量下,随浆体静置时间延长,低... 相似文献
10.
11.
12.
探讨了pH对含长支链PCE(聚羧酸减水剂)水泥净浆流动度和减水率的影响,并对该水泥试块的压缩强度和凝结时间进行了研究。结果表明:pH对含长支链PCE水泥净浆流动度和减水率的影响较小;随着龄期的延长,pH对水泥试块的压缩强度由积极影响变为消极影响;随着pH的不断增加,水泥的初疑时间和终凝时间均呈先长后短态势,并且均在pH为9时相对最长,不同配浆水的pH均会使含长支链PCE水泥浆体出现缓凝现象;当配浆水的pH为13时,含长支链PCE水泥试块的微观结构相对较差,不利于增强水泥试块的压缩强度。 相似文献
13.
通过自由基聚合反应合成了3组主链聚合度基本相同、侧链长度不同的梳状结构聚羧酸盐,对其表面张力和对水泥浆体流动性的影响进行了测试,并研究了其对硅酸盐水泥及添加不同品种和掺量的辅助性胶凝材料的水泥浆体的液相表面张力、流动性及Zeta电位的影响。结果表明:其它实验条件不变、主链聚合度相同的情况下异戊烯醇聚氧乙烯醚(TPEG)与α-甲基丙烯酸(α-MAA)的摩尔比从1:1增加到5:1,合成的聚羧酸盐的表面张力从47.70 m N/m降低至35.53 m N/m,添加到水泥净浆中时初始流动度从280 mm增大至310 mm;随着辅助性胶凝材料和聚羧酸减水剂掺量的增加,水泥浆体的液相表面张力减小、流动性增强;当水胶比从0.5降到0.3,水泥浆的Zeta电位呈现上升趋势,浆体稠度变大,Zeta电位变化更明显;水胶比为0.3时,水泥浆体的Zeta电位值随着辅助性胶凝材料和聚羧酸减水剂掺量的增加呈现下降趋势。 相似文献
14.
将自制聚羧酸减水剂按照一定掺量掺入到不同配比的矿渣水泥中,比较了聚羧酸减水剂对不同矿渣掺量水泥的初始流动度、流动度经时损失、减水率、抗压与抗折强度以及凝结时间的影响,利用SEM技术对矿渣水泥水化产物的形貌进行表征. 相似文献
15.
含硅烷官能团聚羧酸减水剂对水泥浆体流动性和力学性能的影响 总被引:2,自引:0,他引:2
用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)部分或全部取代聚羧酸减水剂合成过程中的丙烯酸(AA)单体,通过自由基聚合合成了一系列不同组成的硅烷改性聚羧酸减水剂(SPC)。研究了引入硅烷官能团后,减水剂对水泥净浆流动度的影响规律。采用总有机碳分析法(TOC)研究了硅烷改性聚羧酸减水剂的吸附行为。最后评价了其对水泥砂浆强度发展的影响。结果表明:聚羧酸减水剂(PC)分子中羧基含量越高,其在水泥颗粒表面的吸附量越大,对水泥浆体的分散性越好;在减水剂分子结构中引入硅氧烷官能团,水解生成的硅羟基可以作为吸附基团,提高减水剂分子在水泥颗粒表面的吸附能力,从而提高减水剂对水泥的分散能力;且硅羟基在水泥表面的吸附为化学吸附,因此其吸附能力大于羧基官能团(—COOH);聚异丁烯醇聚氧乙烯醚和KH570的摩尔比为1∶1或1∶2的共聚物有利于砂浆7、28d抗压强度的发展。 相似文献
16.
水泥浆体的流变性能不仅与材料本身有关,还受环境及外部作用影响。本文针对水泥基材料实际工程中存在的主要外部影响因素,即剪切作用与环境温度,研究了两者对低水胶比水泥浆流变性能的耦合作用。结果表明:水泥浆体在剪切过程中的流变行为与所施加的预剪切有关,水泥浆体的屈服应力随预剪切速率的增大而减小,剪切增稠的程度随预剪切速率的增大而增大;温度升高,水泥颗粒对减水剂的吸附量增加,浆体在不同剪切速率下的平衡表观黏度减小;温度和剪切速率对水泥浆平衡表观黏度的影响具有耦合效应,剪切速率越高,温度的影响越小,反之亦然,并建立了不同温度和剪切速率下平衡表观黏度的数学关系。 相似文献
17.
18.
水泥浆体流变参数是衡量减水剂(SPs)对水泥颗粒分散能力的一种方法.依流变曲线中回滞圈面积的大小可判断减水剂破坏水泥浆体絮凝结构能力的大小.本文采用旋转粘度计测定不同转速下水泥浆体的流变参数,得出回滞圈,采用最小二乘法和线性回归方法计算回滞圈面积.结果表明:氨基磺酸盐减水剂(AS)的面积最大,为73836 Pa·s-1,其次是萘系减水剂(PNS),为10555 Pa·s-1,再次是脂肪类减水剂(FAS),为7635 Pa·s-1,酯类聚羧酸减水剂(PCB)和醚类聚羧酸减水剂(PC)的面积分别为256 Pa·s-1和158 Pa·s-1.计算结果与实际减水率大小一致,为分析各减水剂减水率大小提供理论依据. 相似文献
19.
本文选用水泥、砂中泥和种植泥作为试验研究对象,利用紫外可见分光光度计法(UV),测定反应设定时间后的聚羧酸减水剂浓度,研究水泥和泥对聚羧酸减水剂的吸附性能.试验结果表明:聚羧酸减水剂在水泥和泥表面的吸附量随时间延长而增加,最后达到平衡;聚羧酸减水剂在泥颗粒表面的吸附存在优先选择性和亲和性,使得其在泥颗粒表面的吸附速率和吸附量大于水泥;泥种类不同,吸附量大小不同,对净浆流动度的影响程度不同;泥的掺入会大大降低水泥净浆的流动度,增大流动度经时损失量,且掺量越大影响越大,因此在工程应用中,对原材料泥含量进行控制,降低泥对聚羧酸减水剂的吸附量,对提高减水剂的减水率,保证混凝土坍落度保留值具有重要意义. 相似文献