首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiNi0.8Co0.2O2 cathode powders for lithium-ion batteries were prepared by a modified sol–gel method with citric acid as chelating agent and a small amount of hydroxypropyl cellulose as dispersant agent. The structure and morphology of LiNi0.8Co0.2O2 powders calcined at various temperatures for 4 h in air were characterized by means of powder X-ray diffraction analyzer, scanning electron microscope, thermogravimetric analyzer and differential thermal analyzer, and Brunauer–Emmett–Teller specific surface area analyzer. The results show that LiNi0.8Co0.2O2 powders calcined at 800 °C exhibit the best layered structure ordering and appear to have monodispersed particulates surface. In addition, the electrochemical properties of LiNi0.8Co0.2O2 powders as cathode material were investigated by the charge–discharge and cyclic voltammetry studies in a three-electrode test cell. The initial charge–discharge studies indicate that LiNi0.8Co0.2O2 cathode material obtained from the powders calcined at 800 °C shows the largest charge capacity of 231 mAh g−1 and the largest discharge capacity of 191 mAh g−1. And, the cyclic voltammetry studies indicate that Li+ insertion and extraction in LiNi0.8Co0.2O2 powders is reversible except for the first cycle.  相似文献   

2.
In this article, 5 at.% Yb:Lu2O3 transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) posttreatment using co-precipitated nano-powders. The influence of precipitant molar ratio, ammonium hydrogen carbonate, to metal ions (AHC/M3+, R value) on the properties of Yb:Lu2O3 precursors and calcined powders was investigated systematically. It was found that the powders with different R value calcined at 1100°C for 4 hours were pure cubic Lu2O3 but the morphologies of precursors and powders behaved differently. The opaque samples pre-sintered at 1500°C for 2 hours grew into transparent ceramics after HIP posttreatment at 1750°C for 1 hour. The final ceramic with R = 4.8 showed the best optical quality with the in-line transmittance of 79.7% at 1100 nm. The quasi-CW laser operation was performed at 1034 nm and 1080 nm with a maximum output power up to 8.15 W as well as a corresponding slope efficiency of 58.4%.  相似文献   

3.
《Ceramics International》2020,46(15):24137-24146
Tremendous attention has been devoted for the development of highly efficient and stable electrode materials for supercapacitor applications. In this study, Sn-doped Co3O4 nanorods were prepared via solvothermal process using PVP and oxalic acid as surfactants. The phase, morphology and composition of Sn-doped Co3O4 nanorods were examined by XRD and SEM/EDX techniques. The electrochemical properties were studied via cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), electrochemical impedance spectroscopy (EIS) measurements. The CV results show that electrode based on 5 at. % Sn-doped Co3O4 (5Sn-doped Co3O4) nanorods delivered the highest specific capacitance (842.44 F/g) at 5 mV/s than that of the electrode based on pure Co3O4 (729.39 F/g). In order to further tune the performance of this electrode, the structure, morphology and electrochemical behavior of 5Sn-doped Co3O4 sample were optimized via variety of calcination temperatures ranging from 250 to 400 °C. Notably, the 5Sn-doped Co3O4 sample calcined at 350 °C exhibited higher electrochemical performance (specific capacitance ~913.10 F/g) than other samples calcined at low or high calcination temperatures. The CV curves of 5Sn-doped Co3O4/T-350 °C at scan rates of 5–35 mV/s also showed pseudocapacitor behavior and good electrochemical reversibility. Moreover, the prepared novel electrode material has also displayed good rate capability (71.77%) at current density of 1–10 A/g and long-term stability of 92.23% after 3000 cycles. These excellent electrochemical characteristics of 5Sn–Co3O4/T-350 °C nanorods verified that it will be highly suitable electrode material for supercapacitor applications.  相似文献   

4.
Dual‐phase oxygen transport membranes are fast‐growing research interest for application in oxyfuel combustion process. One such potential candidate is CGO‐FCO (60 wt% Ce0.8Gd0.2O2?δ–40 wt% FeCo2O4) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO‐FCO membranes of 1 mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one‐pot method (modified Pechini process) at 1200°C for 10 h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. It was also identified that the spinel phase tends to form an oxygen deficient phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF) porous layer coating over the composite. The oxygen permeation flux of the CGO‐FCO screen printed with a porous layer of 10 μm thick LSCF is 0.11 mL/cm2 per minute at 850°C with argon as sweep and air as feed gas at the rates of 50 and 250 mL/min.  相似文献   

5.
《Ceramics International》2016,42(9):10770-10778
Ho:Y2O3 ceramics were prepared using co-precipitated powders, with ammonium sulfate as dispersant. Y3+ was co-precipitated together with Ho3+ and Zr4+ to produce precursors, which were calcined at 1100–1400 °C to produce yttria-based powders. At calcination temperatures of ≤1300 °C, agglomeration of powders was not observed. When the temperature was increased to 1400 °C, severe agglomeration was detected. Densification was closely related to the calcination temperature: a lower calcination temperature resulted in a faster densification of ceramics to the relative density of 99.7%. The ultimate densification to ~100% was also closely related to powders' impurity level and agglomeration. Grain growth was mainly determined by sintering temperature, but not by the initial crystallite size of powders. The optimal calcination temperature was 1300 °C, at which the obtained Ho:Y2O3 powder was free from agglomeration. Using this powder, the resultant Ho:Y2O3 ceramics showed pore-free microstructure and good optical transparency.  相似文献   

6.
The processing and characterisation of Pb(Mg1/3Nb2/3)O3 (PMN) materials, obtained either by spray-drying the solution of the precursors or by the conventional “columbite” method, were investigated and the morphological and micro-structural characteristics were compared. The acid solution of ammonium-peroxo-niobium complex, magnesium and lead nitrates was spray-dried and the precursor powder obtained was calcined at different temperatures ranging from 350 to 900 °C. The morphologies and the XRD patterns of the powders were compared. The calcined powders exhibited a pyrochlore phase above 400 °C converting into an almost pure perovskite phase at 800 °C. The powder calcined at 350, 500 and 800 °C were sintered at different temperatures, ranging from 950 to 1150 °C, always resulting in a pure perovskite PMN material. The XRD patterns of as-fired surfaces of samples sintered at 950 and 1050 °C showed an unwanted PbO phase together with the main PMN, nevertheless this secondary phase is not present in the ground surfaces. The high reactivity of sprayed powder is reflected in the formation and densification of pure perovskite PMN material with a faster process as regards the conventional one; in particular samples of about 96% theoretical density were obtained starting from the amorphous powder calcined at low temperature (350 °C) through a reaction sintering process. Furthermore, due to the better flowability of the spray-dried powder, the cold consolidation process is highly improved and no binder addition to powder is necessary.  相似文献   

7.
Nanometric-sized gadolinia (Gd2O3) powders were obtained by applying solid-state displacement reaction at room temperature and low temperature calcination. The XRD analysis revealed that the room temperature product was gadolinium hydroxide, Gd(OH)3. In order to induce crystallization of Gd2O3, the subsequent calcination at 600  1200 °C of the room temperature reaction products was studied. Calculation of average crystallite size (D) as well as separation of the effect of crystallite size and strain of nanocrystals was performed on the basic of Williamson-Hall plots. The morphologies of powders calcined at different temperatures were followed by scanning electron microscopy. The pure cubic Gd2O3 phase was made at 600 °C which converted to monoclinic Gd2O3 phase between 1400° and 1600 °C. High-density (96% of theoretical density) ceramic pellet free of any additives was obtained after pressureless sintering at 1600 °C for 4 h in air, using calcined powder at 600 °C.  相似文献   

8.
Low-temperature sintering of 12Pb(Ni1/3Sb2/3)O3–40PbZrO3–48PbTiO3 (12PNS–40PZ–48PT) calcined powders with V2O5 and excess PbO additives has been investigated. Adding 0.20 to 0.40 wt.% V2O5 and 1.0 wt.% excess PbO to 12PNS–40PZ–48PT calcined powders and sintering at 950 °C for 4 h, the sintered samples only contain the perovskite structure. The calcined powders are doped with 3.0 wt.% excess PbO and 0.20 to 1.0 wt.% V2O5 and sintered at 950 °C for 4 h, the coexistence of both tetragonal and rhombohedral phases with the minor phase of pyrochlore is observed. During the calcined powders contain 1.0 wt.% excess PbO and are sintered at 950 to 975 °C for 2 h, the bulk density decreases with V2O5 addition greater than 0.6 wt.%. When the calcined powders with 3.0 wt.% excess PbO are sintered at 900 to 975 °C for 2 h, the bulk density decreases with added V2O5 content increased. The values of the planar coupling coefficient (Kp) approach the maxima, namely, 0.51 obtained for the compacts containing 0.40 wt.% V2O5 and 1.0 wt.% excess PbO and sintered at 950 °C. As the calcined powders are added with 3.0 wt.% excess PbO and 0.80 wt.% V2O5 and sintered at 975 °C for 2 h, the maximum Qm value 1100 is obtained.  相似文献   

9.
《Ceramics International》2020,46(6):7541-7549
To develop tungsten-free cermets, a novel MoCoB–Co cermet composed of MoCoB as a hard phase and Co as a binder phase was synthesized by the reaction sintering of Mo, Co, and B powders. The microstructure evolution, phase transformation, and mechanical properties of the cermet were investigated. We demonstrated that the mixed powders experienced three solid-phase reactions, Co + B → Co2B, 11Mo + 15Co2B → Mo2Co21B6 + 9MoCoB, and 4Mo + Mo2Co21B6 → 6MoCoB +15Co, and underwent two liquid-phase reactions. Nanosized, tremella-like Co structures were formed on the surface of the particles between 1100 and 1200 °C. The formation of these structures may be due to the Kirkendall effect. Further, the first liquid, L1, was formed at 1242 °C by a eutectic reaction between the tremella-like Co structures and MoCoB. This led to an increase in the relative density of the sample from 43% to 71.7%. At 1268 °C, the second liquid, L2, was formed as a result of a eutectic reaction between Co and MoCoB that further increased the relative density of the sample to 95%. At 1300 °C, the cermet exhibited the highest hardness and transverse rupture strength of 83.9 HRA and 1700 MPa, respectively.  相似文献   

10.
《Ceramics International》2022,48(1):455-462
The calcium cobaltite Ca3-xLaxCo4-yCuyO9+δ with x and y = 0 and 0.1 were synthesized and the electrical, thermal, and catalytic behaviors for the oxygen reduction reaction (ORR) for use as air electrodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs) were evaluated. X?ray diffraction confirms the Ca3-xLaxCo4-yCuyO9+δ samples were crystallized in a monoclinic structure and scanning electron microscopic image shows lamella-like grain formation. Introduction of dopants decreases slightly the loss of lattice oxygen and thermal expansion co-efficient. The Ca3-xLaxCo4-yCuyO9+δ samples exhibit good phase stability for long-term operation, thermal expansion, and chemical compatibility with the Ce0.8Gd0.2O2-δ electrolyte. Among the studied samples, Ca2.9La0.1Co4O9+δ shows a maximum conductivity of 176 Scm?1 at 800 °C. Although the doped samples exhibit a higher total electrical conductivity, an improved symmetrical cell performance is displayed by the undoped sample. Comparing the sintering temperatures, the composite cathode Ca3Co4O9+δ + Ce0.8Gd0.2O2-δ sintered at 800 °C exhibit the lowest area specific resistance of 0.154 Ω cm2 at 800 °C in air. In the Ca3-xLaxCo4-yCuyO9+δ + GDC composite cathodes, the charge-transfer process at high frequencies presents a major rate limiting step for the oxygen reduction reaction.  相似文献   

11.
Yttria-stabilized zirconia powders were prepared by the sol–gel method coupled with supercritical CO2 fluid-drying technology, using ZrOCl2·8H2O as the precursor, urea as the precipitant, and yttria as the stabilizer. The particles were characterized by X-ray diffraction, TEM and BET. The Co3O4/ZrO2(Y2O3) catalysts were prepared by the impregnation method. The content of cobalt was varied from 5 to 12 wt%. The prepared catalysts were calcined at 200–500 °C and the pretreating temperature was varied from 200–400 °C. The performance of CO catalytic oxidation was tested and the catalyst with 8% Co loading, calcined at 200 °C, and with a pretreating temperature of 300 °C, showed the highest catalytic activity. The temperature for 95% CO conversion was as low as 113 °C; and, the catalyst showed both good cycling stability and excellent long-term stability.  相似文献   

12.
Nanocrystalline La0.9Sr0.1Al0.85Mg0.1Co0.05O2.875 (LSAMC) powders were synthesized via a polymeric method using poly(vinyl alcohol) (PVA). The effect of PVA content on the synthesized powders was studied. When the ratio of positively charged valences (Mn+) to hydroxyl groups (OH) is 1.5:1, crystalline LaAlO3 could be obtained at such a low calcination temperature as 700 °C. While at 900 °C the ratio is of less importance, since pure LaAlO3 perovskite could be formed for all powders after calcination at 900 °C. Thermal analysis (TG/DTA) was utilized to characterize the thermal decomposition behaviour of precursor powders. The chemical structure of the calcined powder was studied by Fourier transform infrared (FTIR) spectroscopy. The powder morphology and microstructure were examined by SEM. Dense pellets with well-developed submicron microstructures could be formed after sintering at 1450 °C for 5 h. Compared with the solid-state reaction method, the sintering temperature is substantially lower for powder prepared by the PVA method. This is due to the ultrafine and highly reactive powder produced.  相似文献   

13.
《Ceramics International》2015,41(8):9577-9584
Mono-dispersed spherical Lu2O3:Eu (5 mol%) powders for transparent ceramics fabrication were synthesized by urea-based homogeneous precipitation technique. The effects of the doped-Eu3+ on the synthesis of Lu2O3:Eu particles were investigated in detail. The results show that the doping of Eu3+ ions into Lu system can significantly decrease the particle size of the resultant precursor spheres. Owing to the sequential precipitation in Lu/Eu system, there are compositional gradients within each of the resultant precursor spheres. Well dispersed, homogeneous and spherical/near spherical Lu2O3:Eu powders were obtained after calcination at 600–1000 °C for 4 h. The powder calcined at 600 °C shows better sintering behavior and can be densified into transparent ceramic after vacuum sintering at 1700 °C for 5 h. The luminescence properties of the obtained Lu2O3:Eu powder and transparent ceramic were also studied.  相似文献   

14.
Monophasic mullite precursors with composition of 3Al2O3·2SiO2 (3:2) were synthesized and then were sintered by Spark Plasma Sintering (SPS) to form transparent mullite ceramics. The precursor powders were calcined at 1100 °C for 2 h. The sintering was carried out by heating the sample to 1450 °C, holding for 10 min. The sintered body obtained a relative bulk density of above 97.5% and an infrared transmittance of 75–82% in wavelength of 2.5–4.3 μm without any additive. When the precursor powders were calcined at below 1100 °C, it was unfavorable for completely eliminating the residual OH, H2O and organic compound. However, when calcined temperature was too high, it was unfavorable either for full densification due to the absence of viscous flow of amorphous phase. At the same calcined temperature, the transmittance of sintered body was decreased with the increase of the sintering temperature above 1450 °C owing to the elongated grain growth.  相似文献   

15.
Using the sol–gel auto combustion method with diethanolamine (DEA) as fuel, a sequence of iron-substituted zinc aluminates, ZnFexAl2-xO4 powders, including variable Fe3+ ion concentrations (0 ≤ x ≤ 2) were effectively prepared. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), the Brunauer–Emmett–Teller (BET) method, UV–visible diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) were employed to examine the structures, chemical bonds, morphologies, composition, surface area, and optical properties as well as the magnetic behavior of the obtained samples. A single-phase spinel structure was obtained for the calcined aluminate powders with different interplanar spacing and crystallite sizes, as revealed by the classification results. The bandgap energy (Eg) of adapted aluminates was in the range of 2.04-3.14 eV, identified as being much lower compared to the pure sample (5.60 eV). Thus, Fe3+-substituted ZnAl2O4 samples could be successfully photoexcited using both ultraviolet and visible light, as suggested by the results. Examination of how the four main pollutant types decay when irradiated by sunlight was carried out to assess the samples and establish photocatalytic activity. These contaminants included rhodamine B (RhB), methylene blue (MB), methyl orange (MO), and methyl red (MR). The performance of photocatalytic degradation reached 98% after 150 min for all optimal samples of organic dyes. Besides, each of the altered photocatalysts could be recycled and displayed high stability. The S-shaped curve of ferrimagnetism can result in those samples as found by the magnetic measurements, though pure ZnAl2O4 displays diamagnetic characteristics. The adapted samples show intense improvement in the remanent magnetization (Mr) when compared to pure ZnAl2O4, signifying that magnetic photocatalyst recovery by applying an external magnetic field is easy. Thus, these results offer a convincing sign that ZnAl2O4 powders replaced by Fe3+ could provide the ability to aid in the ecologically friendly collection of solar energy.  相似文献   

16.
In this work the metallic cobalt was electrodeposited on 430 steel in order to obtain a low electrical resistance film made to Co3O4. Pure cobalt was obtained by acidic dissolution of lithium cobalt oxide (LiCoO2) present in exhausted Li-ion battery cathode. The electrodeposition was performed with a 96% efficiency at a potential of 1.50 V versus Ag/AgCl. The electrodeposited cobalt showed the face-centered cubic (23%) and hexagonal centered (77%) phases. After oxidation at 850 °C for 1000 h in air, the cobalt layer was transformed into the Co3O4 phase. On the other hand, a sample without cobalt showed the usual Cr2O3 and FeCr2O4 phases. After 1000 h at 850 °C, in air the area specific resistance of the sample with the cobalt oxide layer was 0.038 Ω cm−2, while it was 1.30 Ω cm−2 for the bare sample.  相似文献   

17.
《Ceramics International》2020,46(11):18667-18674
Low temperature co-fired ceramics (LTCCs) technology plays an important role in modern wireless communication. Zn3-xCoxB2O6 (x = 0–0.25) low temperature fired ceramics were synthesized via traditional solid-state reaction method. Influences of Co2+ substitution on crystal phase composition, grain size, grain morphology, microwave dielectric properties, bond energy, and bond valence were investigated in detail. X-ray diffraction analysis indicated that the major phase of the ceramics was monoclinic Zn3(BO3)2. Solid solution was formed with Co2+ substituted for Zn2+ because no individual phase that contained Co was observed. An increase in the amount of Co2+ substitution changed average grain sizes, and regrowth of grains were observed with Co2+ substitution. Appropriate amount of Co2+ substitution improved densification. With changes in Co2+ substitution, bond energy of major phase and average bond valence of B–O were positively correlated to temperature coefficient of resonant frequency. The Zn2.927Co0.075B2O6 ceramic sintered at 875 °C for 4 h exhibited excellent microwave properties with εr = 6.79, Q × f = 140,402 GHz, and τf = −87.42 ppm/°C. This ceramic is regarded as candidate for LTCC applications.  相似文献   

18.
Nanocrystalline nickel and copper-substituted zinc aluminate spinel powders (NixZn1−xAl2O4 and CuxZn1−xAl2O4) with different additional ion concentrations (0 ≤ x ≤ 1) were successfully synthesized by the sol-gel auto combustion method using diethanolamine (DEA) as a fuel. The structures, chemical bonds, morphologies, composition, surface area, and optical properties including the magnetic behavior of the obtained samples were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), the Brunauer-Emmett-Teller (BET) method, UV-visible diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM). All characterization results confirmed that a single-phase spinel structure was obtained for all calcined aluminate powders with various crystallite sizes and lattice constants. The band gap energy (Eg) of all modified aluminates is in the range of 2.99-3.15 eV, which was found to be much lower than that of the pure sample (5.60 eV). These results indicate that the Ni2+ and Cu2+-substituted ZnAl2O4 samples could be effectively photoexcited by both the ultraviolet and visible light. Evaluation of the samples to determine the photocatalytic activity was carried out through investigation of the way the four main pollutant types decompose when irradiated by sunlight. These pollutants were rhodamine B (RhB), methylene blue (MB), methyl orange (MO), and methyl red (MR). For all optimum samples of organic dyes, the efficiency of photocatalytic degradation achieved 96% by the end of 150 min. Furthermore, each of the modified photocatalysts could be reused and showed a high degree of stability. According to magnetic measurements, the S-shaped curve of ferrimagnetism can arise in those samples with the optimum concentration, although pure ZnAl2O4 exhibits diamagnetic properties. In comparison to pure ZnAl2O4, the modified samples exhibit high enhancement in the remanent magnetization (Mr), which indicates that it is easy to recover those magnetic photocatalyst through the use of an external magnetic field application. These findings therefore serve as a strong indication that ZnAl2O4 powders substituted by both Ni2+ and Cu2+ may offer the capability to serve in environmentally beneficial harvesting of solar energy.  相似文献   

19.
Nanocrystalline Ca2.76Cu0.24Co4O9 powders (25 nm in crystallite size) are synthesized by the solution combustion method, using aspartic acid as the combustion fuel. In this study, we discuss the effect of sintering temperature on the microstructure and thermoelectric properties of Ca2.76Cu0.24Co4O9. The density and grain size increase with an increase in sintering temperature. The Ca2.76Cu0.24Co4O9 sintered at 900 °C shows the largest value of electrical conductivity and Seebeck coefficient, resulting in the largest power factor (3.8×10?4 W m?1 K?2 at 800 °C). This value is more than 22 times larger than that of the Ca2.76Cu0.24Co4O9 sintered at 940 °C (1.7×10?5 W m?1 K?2 at 800 °C).  相似文献   

20.
The cobalt cyclotetraphosphate, Co2P4O12, was synthesized by evaporating a mixture of cobalt chloride hexahydrate, phosphoric acid and water at 70 °C, with further calcinations at 400 °C, 500 °C and 600 °C for 3 h. XRD results indicated that the Co2P4O12 compounds obtained had only monoclinic phase with space group C2h6 (Z=4). From FT-IR spectra, vibrational modes corresponding to internal vibrations of the P4O124? anion were identified. The morphologies and crystallite sizes for the Co2P4O12 obtained from SEM data and X-ray line broadening showed non-uniform particles and 37–68 nm, respectively. All characterization methods showed that the monoclinic phase of Co2P4O12 could be synthesized at the low temperature of 400 °C with short time consumption. The temperature was about 400 °C lower than that used in the previous synthesis method with CoCl2 as reactant, and resulted in a cost-, energy-, and time-saving method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号