首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Boron is considered to influence the performance of several metabolic enzymes and boron deficiency is associated with impaired growth and abnormal bone development. As such, boron is a beneficial bioactive element for animals and humans. It is also well known that boron stimulates wound healing and improves bone health. The addition of boron in different proportions to bioactive glasses has significant effects on glass structure, glass processing parameters, biodegradability, biocompatibility, bioactivity and cytotoxicity. Different compositions of bioactive glasses (BGs) containing boron, including boron-doped, borosilicate and borate glasses, are being investigated for bone and soft tissue engineering under the premise that these BGs are suitable carriers of boron, indicating controlled release of B species in the biological environment. This paper reviews up to date research and applications of borate, borosilicate, and boron doped silicate and phosphate BGs focussing on their physical, structural, degradation and biological properties for hard and soft tissue regeneration.  相似文献   

2.
《Ceramics International》2017,43(4):3531-3539
Bioactive glasses are important class of materials that have a wide range of applications in tissue engineering and dentistry. In dental tissue engineering, nanofibrous structures exhibit interesting features, such as high surface area, surface functionalization and porosity. In this study, silicate-based 45S5 and 13-93 bioactive glass fibers were fabricated using electrospinning technique and their in vitro mineralization behavior was investigated in two different artificial saliva solutions for various time intervals. Results revealed that both 45S5 and 13-93 bioactive glass fibers show high mineralization behavior in artificial saliva solutions. However different hydroxyapatite (HA) formation rates were observed depending on the glass type and the artificial saliva composition. HA formation initiated earlier in 45S5 glass fibers treated in artificial saliva compared to 13-93 glass. On the other hand, after 30 days of treatment, the surface of 13-93 glass fibers converted to pure crystalline HA, whereas, 45S5 glass surface contained some additional crystalline phases such as aragonite and calcite. Treatment in SAGF medium resulted with better HA conversion ability compared to Carter-Brugirard saliva for both types of glass fibers. In conclusion, the use of electrospun nanofibrous 45S5 and 13-93 bioactive glass scaffolds could be one approach suitable to dental applications.  相似文献   

3.
Novel niobium-containing bioactive glass formulations (Nb-BGs) were designed, produced and used to fabricate sintered glass-ceramic granules to examine their in vitro bioactivity and angiogenic potential. Nb-BGs were prepared by melting and quenching. Afterwards, the glasses were crushed and milled into fine powders. These powders were used to make aqueous slurries which were poured into molds, dried and sintered to produce pellets, from which granules of 0.5–0.85 mm in size were obtained. In vitro bioactivity was tested by immersing the granules in simulated body fluid for up to 14 days. Cell biology tests were carried out by indirect culture of bone marrow stromal cells (ST-2) with supernatants resulting from incubation of BG granules in cell culture medium. The effect of dissolution products from Nb-BGs on the secretion of vascular endothelial growth factor (VEGF) was assessed to characterize the angiogenic potential of the new Nb-containing BG compositions.  相似文献   

4.
In this work, HA/bioactive glass Functionally Graded Materials (FGMs) are obtained for the first time by means of Spark Plasma Sintering (SPS). Two series of highly dense 5 layered products, namely FGMS1 and FGMS2, are prepared under optimized SPS conditions, i.e. 1000 °C/2 min/16 MPa and 800 °C/2 min/50 MPa, respectively, using a die with varying cross section.Results arising from XRD, SEM, mechanical and biological characterization in SBF, evidence that lower temperature and higher-pressure levels used for FGMS2 samples provide better materials in terms of microstructure, compactness, hardness, elastic modulus and in vitro bioactivity. Indeed, a fully sintered and crack-free microstructure with no crystallisation at the top layer (100% bioactive glass) is correspondingly produced.The obtainment of such FGMs is quite promising, since it permits to vary the relative volume fractions of the two constituents and, consequently, tailor the biological response for specific clinical applications.  相似文献   

5.
《Ceramics International》2021,47(20):28122-28144
Hydroxyapatite (HAP) has been considered to be one of the most preferred scaffold materials among many in the last decade for the bone tissue engineering. Be it prosthetic implants, scaffolds or artificial bone cement, hydroxyapatite has received highest attraction among all due to its chemical and physical properties similar to that of human bone. Although it can be used in the bone tissue engineering as the original composition; for enhancing its different properties relevant to in vivo applications, the calcium in HAP may also be replaced by other atomic dopants depending on usage. Here, we review various HAP coating agents and methods, their merits and demerits. We also review various HAP doping materials, including both cationic as well as anionic materials. We discuss the effects and usage of substitution of hydroxyapatite and their subsequent usage in both bone tissue engineering and maxillofacial surgeries. We consider various research articles published in recent times to accomplish detailed discussion on the subject.  相似文献   

6.
The critical success factors for bone tissue engineering in clinical applications are scaffolds. Ion doping is one of the most important methods to modify the properties of bioceramics for better angiogenesis abilities, biomechanical properties, and biocompatibility. This paper presents a novel ion doping method applied in calcium polyphosphate (CPP)-based bioceramic scaffolds substituted by strontium ions to form (SCPP) scaffolds for bone tissue regeneration. The microstructure and crystallization of the scaffolds were detected by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Degradation tests were assessed to evaluate the mechanical and chemical stabilities of SCPP in vitro. The cell biocompatibility was measured with respect to the cytotoxicity of the extractions of scaffolds. Bone implantation was performed to evaluate the biodegradability and osteoconductivity of the scaffolds, and the bone formation examined by using X-ray radiography. The results indicated that the obtained SCPP scaffolds had a single CPP phase. The SCPP scaffolds yielded a better degradation property than the pure CPP scaffold. The MTT assay and in vivo results reveal that the SCPP scaffolds exhibited a better cell biocompatibility and tissue biocompatibility than CPP and hydroxyapatite (HA) scaffolds. The in vivo immunohistochemistry staining for VEGF also showed that SCPP had a potential to promote the formation of angiogenesis and the regeneration of bone. SCPP scaffold could serve as a potential biomaterial with stimulating angiogenesis in bone tissue engineering and bone repair.  相似文献   

7.
In this study, bismuth doped 45S5 nanobioactive bioglass (nBG) and graphene oxide (GO) nanocomposites were developed and characterized in terms of microstructural, mechanical, bioactivity and biological properties. Bismuth (Bi) - doped nBG was synthesized by sol-gel method and sintered at 600 °C for 2 h. Nanosized GO was homogeneously mixed with Bi doped bioglass at various ratios to prepare nanocomposites. Addition of Bi increased the density of nBG samples while a considerable decrease in density was observed for nanocomposites with GO incorporation. Bi improved the diametral tensile strength of nBG and addition of 2.5% GO to the composite also increased the diametral tensile strength of the nanocomposites. However, addition of more than 2.5% GO had negative effect on the diametral tensile strength of the composites. Bi doping to bioglass and its composite with GO increased the biocompatibility of 45S5 nBG in which 96.5BG1Bi2.5GO (containing 96.5% BG 1% Bi 2.5% GO in weight ratio) showed highest cell viability. Overall, it can be concluded that composites of Bi doped 45S5 nBG with GO hold promise as biomaterial for biomedical applications.  相似文献   

8.
Injectable bioactive glass-based pastes represent promising biomaterials to fill small bone defects thus improving and speed up the self-healing process. Accordingly, injectable nanocomposite pastes based on bioactive glass-gelatin-3-glycidyloxypropyl trimethoxysilane (GPTMS) were here synthesized via two different glasses 64SiO2. 27CaO. 4MgO. 5P2O5 (mol.%) and 64SiO2.31CaO. 5P2O5 (mol.%). In particular, the effects of MgO on bioactivity, rheology, injectability, disintegration resistance, compressive strength and cellular behaviors were investigated. The results showed that the disintegration resistance and compressive strength of the composite were improved by the replacement of MgO; thus, leading to an increase in the amount of storage modulus (G′) from 26800 to 43400 Pa, equal to an increase in the viscosity of the paste from 136 × 103 to 219 × 103 Pa s. Since the release rate of ions became more controllable, the formation of calcite was decreased after immersion of the Mg bearing samples in the SBF solution. Specimens’ cytocompatibility was firstly verified towards human osteoblasts by metabolic assay as well as visually confirmed by the fluorescent live/dead staining; finally, the ability of human fibroblasts to penetrate within the pores of 3D composites was verified by a migration assay simulating the devices repopulation upon injection in the injured site.  相似文献   

9.
G. Li  G. Liang  S. Zhao  K. Ma  W. Feng  D. Zhou 《应用陶瓷进展》2015,114(3):164-174
Eu2O3 was added to bioactive glass ceramic in the system CaO–SiO2–P2O5–MgO–CaF2 to prepare porous luminescent scaffold with high mechanical property. The crystal structure, compressive strength, in vitro bioactivity, cell affinity and luminescent property under ultraviolet of samples was evaluated. According to results, Eu2O3 improved the crystallisation behaviour but inhibited fluorapatite formation in the glass ceramics. Although scaffolds had connective porous structure, the compressive strength could be improved to as high as 3·6 MPa with the addition of Eu2O3. The in vitro bioactivity test showed a decrease in Ca release ability and a retardation of apatite forming on the samples with increasing substitution of Eu2O3 for CaO. The 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheyltetrazolium bromide assay and SEM observation results displayed that ROS17/2·8 cells could attach and differentiate on all the scaffolds. Moreover, the Eu2O3 doped scaffolds fluoresced well a red colour under ultraviolet, and a decrease in the emission intensities could be observed after the cell coculturing process.  相似文献   

10.
Sodium aluminophosphate glasses were evaluated for their bone repair ability. The glasses belonging to the system 45Na2O–xAl2O3‐(55‐x)P2O5, with = (3, 5, 7, 10 mol%) were prepared by a melt‐quenching method. We assessed the effect of Al2O3 content on the properties of Na2O–Al2O3–P2O5 (NAP) glasses, which were characterized by density measurements, DSC analyses, solubility, bioactivity in simulated body fluid and cytocompatibility with MG‐63 cells. To the best of our knowledge, this is the first investigation of calcium‐free Na2O–Al2O3–P2O5 system glasses as bioactive materials for bone tissue engineering.  相似文献   

11.
In this study, a series of electrospun chitosan/polyethylene oxide (PEO) nanofibrous scaffolds containing different amount of cerium-doped bioactive glasses (Ce-BGs) have been fabricated and proposed for tissue engineering applications. On a biological level, higher 8Ce-BG content significantly improved cytocompatibility of the scaffolds. Moreover, results of fibroblast cell culture study showed that greater 8Ce-BG content could enhance cell attachment and cell expansion on fiber mesh. Characterization of the scaffolds revealed that increasing 8Ce-BG content caused bioactive glass nanoparticles to agglomerate at a higher rate. The SEM mapping revealed thorough dispersion of submicrometric clusters in all areas of the polymeric matrix. Contact angle measurements showed that increasing 8Ce-BG/CH ratio from 0 to 10 (wt.%) improved wettability of the scaffold significantly. However, by increasing the ratio beyond 10 (wt.%), the wettability values decreased gradually. In conclusion, it was found that increasing 8Ce-BG/CH weight ratio up to 40 (wt.%) in the scaffold system was practical and useful for soft tissue engineering applications.  相似文献   

12.
《Ceramics International》2022,48(3):3729-3739
The focus of bone tissue engineering is to realize the regeneration of new functional bone through the synergistic combination of biomaterials, therapeutic agents and cells. Doping of mesoporous bioactive glass (MBG) nanoparticles with therapeutic ions to give them special properties is gaining increasing interest in the design of biomaterials for bone tissue engineering. In this study, we synthesized Se-doped and Te-doped MBG nanoparticles using the sol-gel method, and demonstrated for the first time that the homology of Se and Te endows the functional similarity of bone tissue engineering, and also obtains the desired properties by guiding cell behavior and changing the physicochemical properties of the biomaterial. Results found that MBG nanoparticles doped with Se and Te respectively can be gained similar structure, and thus endowed their similar properties as expected, such as drug sustained release, anticancer and antibacterial properties in a dose-dependent manner. This study provides a feasible strategy for the development of homologous group ions doped nanobiomaterials and their evaluation and basic research in bone tissue engineering.  相似文献   

13.
Tissue engineering is a new approach for regeneration of damaged tissues. The current clinical methods such as autograft and allograft transplantation are not effective for repairing bone damages, mainly due to the limited available sources and the donor-site side effects. In this research, the nanocomposite poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/nano hydroxyapatite (nHA) scaffolds with different nHA ratios for bone regeneration were utilized. The diameter and porosity of scaffolds were approximately 200?nm and 74%, respectively. The degradability test of the scaffolds suggests a low degradation rate with total degradation of 30% after 3 months. Cytotoxicity result showed that cultured osteoblast cells (MC3T3) on nanocomposite scaffolds had superiority in terms of higher proliferation and attachment in comparison with PHBV scaffold. The protein expression of alkaline phosphatase illustrated that nanofibrous scaffold containing hydroxyapatite had the highest alkaline phosphatase activities as a result of better proliferation. These results recommend that PHBV/nHA scaffolds are suitable candidates for bone tissue engineering.  相似文献   

14.
In this study, chitosan-based novel scaffolds containing zeolite A were fabricated by freeze-drying technique. The nanocomposite scaffolds were prepared from chitosan and zeolite A nanocrystals with different amounts (0.5, 1.0, and 2.0%) in aqueous media. The zeolite A nanocrystals and nanocomposite scaffolds were characterized by using FTIR, X-ray powder diffraction, scanning electron microscope, and thermogravimetric analysis. The scaffolds were seeded with bone marrow-derived human mesenchymal stem cell line (UE7T-13), and cell attachment, viability, and cytotoxicity assays were performed. In vitro cytotoxicity of scaffolds toward human mesenchymal stem cell line was evaluated through the evaluation of cell viability and cell attachment assays.  相似文献   

15.
《Ceramics International》2021,47(20):28274-28287
Hydroxyapatite (HAp) is one of the most studied biomaterials for orthopaedic applications, yet its commercialization holds in a few of the lags, such as non-antibacterial activity and target deficiency. In this context, we aimed to design a biphasic nanoassembly of Ferric-HAp-Zincite (ZFHAp) via a one-step co-precipitation method. Ferric-HAp obtained Ca9·333Fe1·167(PO4)7 phase in all the samples, and the secondary phases such as Ca9Fe(PO4)7 and Ca28·8Fe3·2(PO4)21O0.5 were governed by the Fe dopant concentration. Along with ferric-HAp, zincite phases were present in all the samples depending on the concentration of Zn precursor. The synthesized ZFHAp samples were hexagonal in structure with size <100 nm, and a dual morphology, i.e., rod-shaped (77.8 ± 10 nm; major corresponding to HAp) and particulate shaped (30.9 ± 5 nm; minor due to Zincite). Doping of iron imparted paramagnetism resulting in the magnetic target efficiency. ZFHAp samples showed excellent self-antibacterial activity against clinically significant two Gram-positive (E. hirae, S. aureus) and two Gram-negative (E. coli, S. paratyphi) bacteria with lower MIC values (60–80 μg/ml). The antibacterial mechanism was found to be ROS independent and due to the linear release of Zn2+ and Fe3+ ions. The designed ZFHAp samples showed no cytotoxicity up to 5 mg/mL and exhibited 3 times higher bone cell proliferation along with the significant Alkaline Phosphatase (ALP) activity. The prepared nanomaterials also did not show any inflammatory response to bone cells. These findings entitle ZFHAp as a potential candidate for orthopaedic as well as other biomedical applications subject to further clinical trials.  相似文献   

16.
《Ceramics International》2023,49(12):19746-19752
Natural bone is a piezoelectric material that can generate electrical signals when subjected to an external force. Although many studies have attempted to develop piezoelectric biomaterials for bone regeneration, post-treatment steps, such as sintering, are always needed. In this study, we prepared an injectable and piezoelectric bone substitute based on nanosized BaTiO3 (nBT)-added calcium phosphate silicate (CPS). The impacts of nBT on the CPS handleability and mechanical strength were characterized, and show that adding nBT could improve the CPS handleability but affect the CPS mechanical strength in a concentration-dependent manner (from 25.3 ± 1.0 MPa for 10BC to 13.5 ± 1.0 MPa for 40BC). In addition, our approach could fabricate a piezoelectric bone substitute with comparable piezoelectricity to the native bone without any post-treatment. The in vitro analyses demonstrated that nBT/CPS was biocompatible and could promote osteoblast differentiation. In conclusion, our results strongly indicate that the injectable formulation based on nBT/CPS can be a promising candidate in bone tissue engineering, and further research is needed to investigate the biomaterial's performance in bone defect animal models.  相似文献   

17.
The vascularization of tissue-engineered bone is the key problem needed solving before application of tissue-engineered bone in clinical practice. Meanwhile, endothelial cells are the major and important source of seed cells in bone tissue engineering, and significant on promoting vascularization in tissue-engineered bone. Vascularization (namely angiogenesis) is a process mainly controlled by several angiogenic growth factors (VEGF, bFGF and MMP-2) which can be secreted by endothelial cells. Therefore, the research on the stimulations of SCPP to the secretion of the angiogenic growth factors from endothelial cells is very important. This study was performed to determine the ability of strontium-doped calcium polyphosphate (SCPP) to induce angiogenesis by detecting the protein secretion levels and mRNA expression of VEGF, bFGF and MMP-2 from cultured endothelial cells. As a control, we also researched the effect of HA on the mRNA expressions and protein secretion of angiogenic growth factors from cultured endothelial cells. We cultured endothelial cells with SCPP scaffolds containing various concentration of strontium and HA. The results obtained in the MTT and SEM tests indicated that endothelial cells on SCPP scaffold exhibited higher proliferation rate and were easy to get a good spread than them on CPP, the best state of growth and proliferation of cells could be observed on 8%SCPP. The results of ELISA demonstrated that the protein levels of VEGF, bFGF and MMP-2 from cultured endothelial cells increased with the increasing Sr doped in calcium polyphosphate in SCPP groups, the peaks appeared on 8%SCPP. All SCPP groups showed a better ability to stimulate the protein secretion of VEGF, bFGF and MMP-2 from endothelial cells relative to CPP group and HA group. The results of RT-PCR suggested that the 8%SCPP group exhibited a significantly higher mRNA expression of VEGF, bFGF and MMP-2 relative to CPP group and HA group. In conclusion, the results of this study demonstrated that 8%SCPP had obvious promotion for secretion and mRNA expression of angiogenic growth factors from cultured endothelial cells.  相似文献   

18.
A highly crosslinked composite dextran-based scaffold (named DexFoam) was tailored to overcome specific deficiencies of polymeric and ceramic bone scaffolds and to guarantee a bone-mimicking microenvironment for the proliferation of human mesenchymal stem cells in vitro. The creep resistance for up to 90% compressive stain, the capability to regain the original shape after deformation, and the good thermal stability in both physiological and “body limit” conditions make DexFoam a valid alternative to the currently available bone scaffolds. Histopathological evaluation for host reaction and tissue colonization of DexFoam scaffold, implanted subcutaneously in mice, demonstrated its in vivo biocompatibility and biodegradability.  相似文献   

19.
BACKGROUND: This work focuses on combining electrospun biodegradable poly‐DL‐lactide (PDLLA) fibres and 45S5 Bioglass® for tissue engineering applications. RESULTS: A variety of fibrous structures were produced upon application of an electric field to a flowing solution of PDLLA (5 wt/v%) in di‐methyl carbonate (DMC). Electrospinning was achieved at an applied voltage of 8.5 kV for a fixed flow rate of 5 µL min?1. Scanning electron microscopy images of PDLLA fibres deposited on 45S5 Bioglass® sintered pellets revealed that the fibres had diameters in the range 100–200 nm, leading to increased surface roughness, as assessed by white light interferometry. Bioactivity studies on PDLLA fibre coated Bioglass® substrates were carried out in simulated body fluid (SBF) for 7, 14 and 28 days. It was found that mineralization of PDLLA fibres on 45S5 Bioglass® substrate (formation of hydroxyapatite) occurred after 7 days of immersion in SBF and full coverage of PDLLA fibres with HA nanocrystals was achieved after 14 days in SBF. CONCLUSION: The approach investigated represents a convenient method to develop a controlled mineralized fibrous topography on bioactive glass substrates for improved cell attachment, which can be exploited in bone tissue engineering applications. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号