首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we report the substrate effect on ferroelectric and magnetic properties of epitaxial BiFeO3‐based thin films at room temperature. (La, Mn) cosubstituted BiFeO3 (BFOLM) thin films were deposited on differently lattice mismatched single‐crystal substrates to manipulate the strain states in the as‐deposited films. All the films with 30‐nm thick CaRuO3 bottom electrodes exhibited highly epitaxial growth behavior with a slightly monoclinic distorted lattice structure while their strain states are drastically different as confirmed by X‐ray reciprocal space mapping. These films possessed significantly different macroscopic ferroelectric properties with giant remanent polarization of 101 ± 2, 65 ± 2, and 48 ± 2 μC/cm2 for the films grown on SrTiO3, (La, Sr)(Al, Ta)O3, and LaAlO3, respectively. It is found that the room‐temperature magnetic properties are also in accordance with their strain state, having a reciprocal relationship with polarization. For example, the enhanced magnetization is associated with the suppressed polarization and vice versa. The stain tunability of multiferroic properties in BFOLM thin films are presumably ascribed to the polarization rotation and oxygen octahedral tilts.  相似文献   

2.
Two approaches are shown for property control of tunable BaxSr1−xTiO3 (BST) films: (i) two-step growth and (ii) self-selective epitaxial growth. Both processes are based on the deposition of an amorphous ultra thin BST layer prior to the growth of an epitaxial BST film. In the first approach, the mechanical strain in the epitaxial films is controlled by employing a two-step growth process, where the very thin amorphous layer deposited first acts as an absorption layer for the misfit strain through its crystallization. Two-step grown films on LaAlO3 substrates showed effective relaxation of the compressive misfit strain, which resulted in higher in-plane permittivity and tunability of the film. In the second approach, self-selective epitaxial growth, epitaxial/amorphous BST composite structures are achieved where the two phases are electrically inter-connected in parallel. Having a low permittivity, the amorphous component efficiently suppressed the effective permittivity of the composite capacitor, while the epitaxial component helps keep the tunability as large as that of a purely epitaxial BST film. The resultant composite film demonstrated a low permittivity having a high tunability, which is the contradictory phenomenon for a pure tunable ferroelectric.  相似文献   

3.
Bismuth ferrite, BiFeO3, is an important multiferroic material that has attracted remarkable attention for potential applications in functional devices. While thin films of BiFeO3 are attractive for applications in nanoelectronics, bulk polycrystalline BiFeO3 has great potential as a lead‐free and/or high‐temperature actuator material. However, the actuation mechanisms in bulk BiFeO3 are still to be resolved. Here we report the microscopic origin of electric‐field‐induced strain in bulk BiFeO3 ceramic by means of in situ high‐energy X‐ray diffraction. Quantification of intrinsic lattice strain and extrinsic domain switching strain from diffraction data showed that the strain response in rhombohedral bulk BiFeO3 is primarily due to non‐180° ferroelectric domain switching, with no observable change in the phase symmetry, up to the maximum field used in the study. The origin of strain thus differs from the strain mechanism previously shown in thin film BiFeO3, which gives a similar strain/field ratio as rhombohedral bulk BiFeO3. A strong post‐poling relaxation of switched non‐180° ferroelectric domains has been observed and hypothesized to be due to intergranular residual stresses with a possible contribution from the conductive nature of the domain walls in BiFeO3 ceramics.  相似文献   

4.
We present the first principle studies of the structural and electronic properties in high temperature cubic phase (Pm3m) of BiFeO3 based on Density Functional Theory (DFT). All calculations are performed within Local Density Approximation (LDA) functional and Generalized Gradient Approximation (GGA) functional with Ultrasoft Pseudopotentials (USP). It shows that the calculated structural parameters of cubic BiFeO3 are in a good agreement with previous literatures. Based on the calculated of elastic properties of cubic BiFeO3, this material shows a stable mechanical structure. In electronic band structure, the electron wave propagates through Brillouin zone X–R–M–G–R points where the highest valence band overlap with the lowest conduction band to give zero energy band gaps. The Density of States (DOS) demonstrated the significant hybridization between Bi6p, Fe3d and O2p in the range of ?5 eV–5 eV. Thus, it can be implied that multiferroic BiFeO3 are metallic at cubic phase and the metal–insulator transition in this material obeys the band theory.  相似文献   

5.
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.  相似文献   

6.
《Ceramics International》2022,48(3):3800-3807
In this work, we successfully prepared epitaxial La1-xYxCoO3 (x = 0, 0.05, 0.1, 0.15) films on (100) SrTiO3 by polymer assisted deposition. The synergistic effect of biaxially tensile strain and doping yttrium on the structural distortion and photoconductive process of the films has been investigated. Due to lattice mismatch, the epitaxial strain along c-axis as well as the strain-induced tetragonal distortion of La1-xYxCoO3 films increase with the content of doping yttrium. As-prepared films have higher degree of CoO6 octahedral distortion, i.e., Jahn-Teller-like tetragonal distortion, which result in lower crystal field splitting energy and narrower band gap energy, thereby elevating the charge transition. Additionally, increase of epitaxial strain leads to lower adsorption free energy in La1-xYxCoO3 films, and results in the increase of chemisorbed oxygen, which is beneficial to electron transport in the process of light response. The introduction of new oxygen vacancy defect sites by doping Y3+ ions and the proper amount of oxygen vacancy can effectively inhibit the recombination of the photo-induced electron-hole pairs, thus improving the activity for photoconductive response. The results reveal that the photoconductive properties of the as-prepared films are largely related to the synergistic effect of biaxially tensile-strained tetragonal distortion of CoO6 and doping yttrium.  相似文献   

7.
《Ceramics International》2022,48(6):7778-7783
High quality BiFeO3 film with enhanced remanent polarization and magnetization attracts much interest for its great application potential in information storage and photoelectric devices. Here we grew single-crystal epitaxial BiFeO3 film on SrTiO3 substrate through hydrothermal method at low temperature, the film has a quality higher than any reported BiFeO3 films grown through hydrothermal method. Furthermore, BiFeO3 film was grown through a 25 min rapid microwave-assisted hydrothermal process. The two BiFeO3 films exhibited obvious light response to periodically switching on and off of a LED light, and the film grown through microwave-assisted hydrothermal method produced a 4.7V open-circuit voltage exceeding the band gap of BiFeO3 originating from the ferroelectric photovoltaic effect. These results demonstrate that hydrothermal and microwave-assisted hydrothermal method are simple, inexpensive and rapid to grow high quality epitaxial BiFeO3 film with potential application in photoelectric detection and photovoltaic.  相似文献   

8.
《Ceramics International》2017,43(12):9092-9098
The mechanical behavior of polycrystalline lead-free (1-x)BiFeO3-xBaTiO3 (BF-BT) piezoelectric ceramics was investigated under uniaxial compressive stress from room temperature up to 400 °C with macroscopic stress-strain measurements and in situ stress-dependent neutron diffraction. Stress-strain curves revealed a changing mechanical response with BaTiO3 content and temperature. With decreasing BaTiO3 content there was an increase in the coercive stress, which reduced the remanent strain and hysteresis. Full pattern structural refinement of the neutron data reveals both rhombohedral distortion and magnetic moment decreases with increasing BaTiO3 content. In situ stress-dependent neutron diffraction experiments showed that accommodation of external stress occurs through the changes in tilt magnitude and anisotropy of oxygen octahedra at room temperature. The origin of stress-induced strain at room temperature is a lattice deformation without any apparent change in average crystallographic symmetry or domain switching. Temperature-dependent in situ stress-induced measurement of BF-30BT showed maximum strain close to the rhombohedral - pseudocubic transition temperature, which has been proposed to be due to the lattice deformation as well as to the differing degree of tilting of the (Fe/Ti)O6 octahedra.  相似文献   

9.
Multiferroic BiFeO3 films have been deposited on a number of substrates by RF magnetron sputtering. Two routes were adopted in order to obtain the films of high phase purity and accurate stoichiometry. The first was to sputter films at room temperature and then the BiFeO3 phase was formed after sintering at various temperatures under controlled ambient atmosphere. The second was to grow BiFeO3 in-situ at high temperature during sputtering. Although the sintered films grown on SrTiO3 substrates were epitaxial and showed better texture than the in-situ films, they had much poorer ferroelectric properties, due to the residual traces of intermediate phases formed during heating. Under right growth parameters, the in-situ films grown on the LaNiO3?x buffered SrTiO3 showed fully saturated ferroelectric hysteresis loops with large remanent polarisation of 64 μC/cm2. Piezoresponse force microscopy (PFM) was used to examine the ferroelectric domain structures. When scanned without DC bias, fine spontaneous domains were observed. Under ±10 V DC bias, PFM confirmed that the domains could be poled and switched.  相似文献   

10.
《Ceramics International》2022,48(3):3254-3260
In our work last year (H. Zhu et al., Rhombohedral BiFeO3 thick films integrated on Si with a giant electric polarization and prominent piezoelectricity, Acta Materialia 200 (2020) 305–314), it was demonstrated that the rhombohedral-like, (110)-textured BiFeO3 thick films (~2 μm) sputter-deposited at 450 °C and 500 °C exhibited ultrahigh polarizations of Pr ~ 115 μC/cm2 and 135 μC/cm2, respectively. However, it is not sufficient to explain these ultra-high polarizations by a preferential growth mechanism and the effect of a moderate compressive strain. To further clarify the polarization enhancement of the films, the texture characteristics of these BFO thick films were quantitatively analyzed by fitting the rocking curves and pole figures to the March-Dollase model. The results showed that, in addition to the (110)-textured growth of a BFO thick film under a moderate compressive strain, the minority non-(110)-textured grains also contributed to the enhancement of the total polarization. Our study demonstrates that, the ultra-high polarizations of our BFO thick films can be well explained by adding the contribution from non-textured grains to the preferential growth of the film under a compressive strain.  相似文献   

11.
《Ceramics International》2015,41(8):9265-9275
Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), polarization and magnetic measurements. Structural studies by XRD and Rietveld refinement reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO3 (BFO) where enhanced ferroelectric and magnetic properties are produced by internal strain. A high coercive field in the hysteresis loop is observed for the BiFeO3 film. Fatigue and retention free characteristics are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain.  相似文献   

12.
BiFeO3 polycrystalline ceramics were prepared by the mixed oxide route and a chemical route, using additions of Co, ZnO, NiO, Nb2O5 and WO3. The powders were calcined at 700 °C and then pressed and sintered at 800–880 °C for 4 h. High density products up to 96% theoretical were obtained by the use of CoO, ZnO or NiO additions. X-ray diffraction, SEM and TEM confirmed the formation of the primary BiFeO3 and a spinel secondary phase (CoFe2O4, ZnFe2O4 or NiFe2O4 depending on additive). Minor parasitic phases Bi2Fe4O9 and Bi25FeO39 reduced in the presence of CoO, ZnO or NiO. Additions of Nb2O5 and WO3 did not give rise to any grain boundary phases but dissolved in BiFeO3 lattice. HRTEM revealed the presence of domain structures with stripe configurations having widths of typically 200 nm. In samples prepared with additives the activation energy for conduction was in the range 0.78–0.95 eV compared to 0.72 eV in the undoped specimens. In co-doped specimens (Co/Nb or Co/W) the room temperature relative permittivity was ~110 and the high frequency dielectric loss peaks were suppressed. Undoped ceramics were antiferromagnetic but samples prepared with Co or Ni additions were ferromagnetic; for 1% CoO addition the remanent magnetization (MR) values were 1.08 and 0.35 emu/g at temperatures of 5 and 300 K, respectively.  相似文献   

13.
Bismuth ferrite (BiFeO3), a perovskite material, rich in properties and with wide functionality, has had a marked impact on the field of multiferroics, as evidenced by the hundreds of articles published annually over the past 10 years. Studies from the very early stages and particularly those on polycrystalline BiFeO3 ceramics have been faced with difficulties in the preparation of the perovskite free of secondary phases. In this review, we begin by summarizing the major processing issues and clarifying the thermodynamic and kinetic origins of the formation and stabilization of the frequently observed secondary, nonperovskite phases, such as Bi25FeO39 and Bi2Fe4O9. The second part then focuses on the electrical and electromechanical properties of BiFeO3, including the electrical conductivity, dielectric permittivity, high‐field polarization, and strain response, as well as the weak‐field piezoelectric properties. We attempt to establish a link between these properties and address, in particular, the macroscopic response of the ceramics under an external field in terms of the dynamic interaction between the pinning centers (e.g., charged defects) and the ferroelectric/ferroelastic domain walls.  相似文献   

14.
Here we report the effect of the strain states on the structure, optical and electrical transport properties of the La0.05Sr0.95SnO3 (LSSO) thin films grown epitaxially on (001)-oriented 0.70 Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) substrates by pulsed laser deposition. X-ray diffraction results indicate that the films are fully strained up to at least 100 nm thickness, and the in-plane compressive strain gradually releases in thicker films. High-resolution transmission electron microscopy characterizations demonstrate that the LSSO films were grown coherently on PMN-PT(001) substrates. With varying the thicknesses of the fully strained films from 20 to 100 nm, the electrical transport properties are improved significantly. A lowest room-temperature resistivity of 1.88 mΩcm and the highest mobility of 28.1 cm2/Vs are obtained in the 100 nm film. The optical band gap determined from spectroscopic ellipsometry is found to increase from 4.58 to 4.88 eV with the film thicknesses varying from 20 to 500 nm. The results imply that the LSSO epitaxial films exhibit tunable electrical performances and optical band gaps through strain, which may have potential applications in optoelectrical devices.  相似文献   

15.
M3AlX (M = Ti/Zr/Hf, X = C/N) compounds are promising high‐temperature structural ceramics. However, their interesting polymorphism, thermomechanical stabilities, and thermal and mechanical properties were not fully understood. In this work, the polymorphisms of M3AX phases are investigated by combining first‐principles and lattice dynamics calculations. Only Ti3AlN shows polymorphic transition between the cubic and orthorhombic phases at around 1105 K; but other M3AlX phases do not display similar polymorphic phase transition. Furthermore, the temperature‐dependent heat capacity, thermal expansion, and elastic stiffness of Ti3AlN polymorphic phases are reported for the first time to explore the relationship between crystal structures, and mechanical and thermal properties. Ti3AlN polymorphs show anisotropic thermal expansion and elastic stiffness; and the orthorhombic Ti3AlN is suggested as a promising damage tolerant nitride, which has similar properties with the previously reported Zr3AlN and Hf3AlN.  相似文献   

16.
The microstructures of the Bi0.4Ca0.6MnO3 (BCMO) and La0.67Ca0.33MnO3 (LCMO) epitaxial films are investigated by transmission electron microscopy in detail. BCMO epitaxial films (~ 10 and ~ 40 nm) exhibit an island growth mode whereas the LCMO films (~ 6 and ~ 30 nm) follow a layer by layer growth mode. Combined with the critical thickness models for the expected onset of the misfit dislocations in epitaxial films, an atomic collapse model is introduced to explain their mechanism of formation in manganite films. At the beginning of deposition, the strain caused by the lattice mismatch between the epitaxial film and substrate can be accommodated by elastic deformation. With the increase of film thickness, the strain becomes larger and larger. When the film thickness reaches the critical thickness, the strain can only be relaxed by the formation of misfit dislocations. Meanwhile, the atomic configuration of the epitaxial film will reorganize and some atoms begin to collapse, thus an island morphology will be formed. Once the collapse morphology is formed, maintenance of this wave‐like morphology depends on atomic diffusion length of the deposited atoms. If the diffusion length of the deposited atoms is long, the island morphology will not be maintained. If the diffusion length of the deposited atoms is short, the island morphology will keep until the epitaxial film is thick enough. The results could shed light on the growth modes for other perovskite epitaxial films.  相似文献   

17.
Solid solutions of BiFeO3 and BaTiO3 are promising lead-free piezoelectric materials, especially around the morphotropic phase boundary at 0.67BiFeO3-0.33BaTiO3. Still, these materials are challenged by phase instability and limited understanding of the processing-properties relationship. Here, we investigate mechanochemical activation and the use of BaTiO3 as seed particles for the 0.67BiFeO3-0.33BaTiO3 phase. Contrary to expectations from seeding in lead-based perovskites, the BaTiO3 seeds do not promote the 0.67BiFeO3-0.33BaTiO3 perovskite phase neither during the mechanochemical activation nor the subsequent sintering, but cause an inhomogeneous structure with remnant BaTiO3. This results in ceramics with weaker low-field piezoelectric response than that of the unseeded route, but with higher field-induced strain, even up to 150 °C. Both routes produce ceramics of high density and without significant secondary phases visible by X-ray diffraction. This demonstrates the advantage of mechanochemical activation and the possibility to tailor the piezoelectric response of 0.67BiFeO3-0.33BaTiO3 through the processing route.  相似文献   

18.
The oxygen octahedral can be distorted by epitaxial strain due to the lattice mismatch. The epitaxial strain (εyy) linearly decreases from ? 0.244% to ? 0.445% with the growth temperature. Thin films grow along c axis on the SrTiO3 substrate and exhibit the epitaxial relationship of Ba(Co,Zn)1/3Nb2/3O3 (001) // SrTiO3 (001). The superlattice reflections arising from in-phase tilting of the oxygen octahedra are clearly visible along [010] and [111] zone axis. The IR modes at 330 cm?1 and 390 cm?1 related to in-phase tilting are observed in far-infrared reflectivity spectroscopy. The calculated Q×f values from far-infrared reflectivity spectra of films grown at 550 °C to 700 °C increases from 51,000 GHz to 91,000 GHz mainly due to the enhancement of crystalline quality. The intrinsic quality factor (Q) is mainly contributed by O-(Co, Nb)-O and O-(Zn, Nb)-O bonding modes, while in-phase tilting in BCZN films may result in enhanced dielectric constants.  相似文献   

19.
The (1?x)BiFeO3xBaTiO3 (with x = 0.1, 0.2, 0.3, and 0.4) ceramics were fabricated successfully by solid‐state reaction method. Single‐phase perovskite was obtained in all ceramics, as confirmed by XRD technique. It was observed that 0.7BiFeO3–0.3BaTiO3 was the morphotropic phase boundary (MPB) between rhombohedral and cubic phases, as also revealed from ferroelectric and magnetic properties. The simulated and experimental X‐Ray Absorption Spectroscopy (XAS) study revealed that BT in 0.75BF‐0.25BT is possibly taken a rhombohedral structure. Furthermore, the rounded ferroelectric hysteresis loops observed for 0.9BiFeO3–0.1BaTiO3 and 0.8BiFeO3–0.2BaTiO3 compositions could be attributed to their microstructure and surface charge effects and electron transfer between Fe3+ and Fe2+ ions. It was also found that high dielectric constant of 0.9BiFeO3–0.1BaTiO3 composition was a result of grain and grain‐boundary effects, as observed in SEM micrographs. In addition, a strong signature of dielectric relaxation behavior was observed in this ceramic system with the activation energy 0.467 eV obtained from the Arrhenius' law. Finally, the local structure investigation with XAS technique provided additional information to better understand the electric and magnetic properties in the BF‐BT ceramic system.  相似文献   

20.
Single phase multiferroic undoped BiFeO3 notoriously suffers due to the poor spin–charge coupling resulting in limitations to device applications. The present work focuses on the tailoring of its multiferroic and magnetoelectric coupling properties by synthesizing multiferroic Bi0.95Er0.05Fe0.98TM0.02O3 (TM = Nb, Mn and Mo) ceramics. The ferroelectric, magnetic, current leakage measurements and magnetoelectric effect were investigated. XRD along with the Reitveld refinement results confirms that all the samples possess perovskite based rhombohedral structure and reveals that doping of (Er, Nb), (Er, Mn) and (Er, Mo) induced the crystallographic distortion in the BFO lattice and hence induced a variation in the bond lengths and bond angle. Dual doping significantly enhanced the electrical, magnetic properties and magnetoelectric coupling as compared to BiFeO3. Doping has lowered the leakage current by three to four orders compared to BFO. The lattice distortion, reduced leakage current and destruction of spin–cycloidal structure could be the origin for these improved features. The (Er, Nb) doped BiFeO3 yields enhanced ferroelectric character with the maximum polarization value of 0.46 µC/cm2, maximum ME coupling of 0.22 mV/cm at a magnetic field of 130 G, an improved magnetization with a remanance value of 0.0903 emu/g and the lowest leakage current density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号