首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Glass components fabricated by the sintering route have wide-ranging applications. However, one issue is that the crystallization tendency of glass powders often leads to residual pore-glass interfaces and crystal-glass interfaces, thereby causing strong light scattering and rendering the sintered glass opaque. This issue is particularly pronounced in glasses with a low glass transition temperature (Tg) due to their weak bonding and thus high crystallization tendency. In the present study, a Bi2O3-ZnO-B2O3 glass with a low Tg of 364°C was fabricated using the conventional sintering method to explore whether transparent glass materials can be obtained. The temperature range of crystallization of the glass powders was analyzed using differential scanning calorimetry. X-ray diffraction was employed to analyze the crystalline phases formed in the sintered glasses. The microstructure of the sintered glasses was examined using scanning electron microscopy. The optical transmittance of the sintered glasses was measured using ultraviolet-visible spectroscopy. The results show that transparent sintered glasses with the highest transmittance of 54% at the wavelength of 650 nm can be obtained by using a coarser initial particle size, lower forming pressure, and an appropriate sintering temperature/time (430°C/30 min). It is suggested that this combination of processing parameters can suppress glass crystallization while maintaining a low glass viscosity during sintering.  相似文献   

2.
This work presents the thermal properties of ytterbium‐doped yttrium aluminium garnet (Yb:YAG) transparent ceramics at elevated temperatures in dependence on the dopant concentration and on temperature. Transparent polycrystalline Yb:YAG ceramics were prepared by solid‐state reaction of oxide powders sintered under high vacuum. The dopant amount varied from 0 to 20 at.% of Yb. Thermal diffusivity of the sintered samples was measured by the laser and xenon flash methods at temperatures ranging from room temperature to 900°C. Both the thermal diffusivity and thermal conductivity values decreased with increasing dopant content, and until 500°C a decrease was observed also with increasing temperature. When available, the measured values were compared to data published in literature, and were found to be in good agreement. Based on the measured values, empirical relations in the form of shifted power laws are proposed for the temperature dependence of thermal diffusivity.  相似文献   

3.
Sintered glass-ceramics were produced from coal fly ashes, red mud from aluminum production and silica fume. The capabilities of Tunçbilek fly ash and a mixture of Orhaneli fly ash, red mud and silica fume to be vitrified and devitrified by sintering process were investigated by means of scanning electron microscopy and X-ray diffraction analysis. To determine the effect of binder in the sintering technique, glass powders were pressed without or with the addition of polyvinyl alcohol. Owing to microstructural observations, density and hardness measurements, it can be said that physical properties and the hardness of the produced samples strongly depended on the crystallization degree of the samples. Toxicity characteristic leaching procedure test results showed that glass-ceramic samples produced by using sintering technique could be considered as non-hazardous materials. Chemical durability of the sintered glass-ceramic samples was also good. Microstructural investigations, hardness and physical properties of the samples indicated that the addition of polyvinyl alcohol improved the properties of sintered glass-ceramics obtained from Orhaneli fly ash, red mud and silica fume.  相似文献   

4.
We report Eu3+ doped transparent glass-ceramics (GCs) containing bismuth layer-structured ferroelectric (BLSF) CaBi2Ta2O9 (CBT) as the major crystal phase. The CBT crystal phase was generated in a silica rich glass matrix of SiO2-K2O-CaO-Bi2O3-Ta2O5 glass system synthesized by melt quenching technique followed by controlled crystallization through ceramming heat-treatment. Non-isothermal DSC study was conducted to analyze crystallization kinetics of the glass in order to understand the crystallization mechanism. The optimum heat-treatment protocol for ceramization of precursor glass that has been determined through crystallization kinetics analysis was employed to fabricate transparent GCs containing CBT nanocrystals, which was otherwise difficult. Structural analysis of the GCs was carried out using XRD, TEM, FESEM and Raman spectroscopy and results confirmed the existence of CBT nanocrystals. The transmittance and optical band gap energies of the GCs were found to be less when compared to the precursor glass. The refractive indices of the GCs were increased monotonically with increase in heat-treatment time, signaling densification of samples upon heat-treatment. The dielectric constants (εr) of the GCs were progressively increased with increase in heat-treatment duration indicating evolution of ferroelectric CBT crystals phase upon heat-treatment.  相似文献   

5.
付哲  姚彬  李浩  张美荣  邓磊波 《硅酸盐通报》2022,41(8):2910-2917
透明玻璃陶瓷具有热膨胀系数可调、强度高、化学稳定性好的优点,且兼具透光/发光的特性,是一种在光学信息、生物技术、激光技术、红外遥感及民用照明等领域有着广泛的应用前景的新型功能材料。本文简述了玻璃陶瓷的透光机制,对形核剂、过渡金属离子及稀土离子掺杂MgO-Al2O3-SiO2(MAS)系透明玻璃陶的析晶及透光/发光性能方面的研究进展进行了介绍,并简要分析了开发具备透光/发光性质的高结晶度MAS透明玻璃陶瓷材料存在的问题,最后展望了透明玻璃陶瓷的发展趋势与前景。  相似文献   

6.
Transparent hydroxyapatite (HAP) was prepared by sintering gel-cast powder compacts at 1000°C for 2 h; the resultant HAP material was studied using X-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and microhardness measurement. Nanoscale HAP crystallites were prepared using a precipitation method that involved calcium nitrate and ammonium dihydrogen orthophosphate solutions; the preparation was conducted at a temperature of 0°C. The precipitate was gel-cast and sintered at 1000°C in the form of a transparent ceramic that had a uniform grain size of 250 μm. The maximum Vickers microhardness obtained for a sample sintered at 1000°C was 6.57 GPa. The sintering behavior of gel-cast samples prepared from high-temperature-precipitated HAP was compared with that of material prepared at 0°C.  相似文献   

7.
BaO-K2O-Nb2O5-SiO2 (BKNS) glass ceramics were prepared by microwave crystallization of transparent glass matrices and the effects of microwave treatment temperature on their dielectric performances, phase structure, microstructure and breakdown strength (BDS) were investigated systematically. X-ray diffraction results suggested that microwave treatment had no significant influence on the type of precipitated phases. The microstructure of the glass ceramics was remarkably optimized via microwave treatment. The dielectric constant and breakdown strength of microwave-treated samples were significantly improved as compared with conventional-heated samples at the same temperature. The maximum theoretical energy storage density of microwave-treatment samples at 750?°C reached 12.7?J/cm3, which was larger than that of the conventional-heated samples (8.6?J/cm3).  相似文献   

8.
Novel Ho3+ doped highly transparent NaYbF4 glass‐ceramics were successfully fabricated by melt‐quenching technique. Their structural and luminescent properties were systemically investigated by XRD, TEM, absorption spectra, upconversion spectra, and lifetime measurements. Excited by 980‐nm laser, samples exhibit characteristic emissions of Ho3+. Impressively, the luminescent color can be tuned easily from red for precursor glass to green for glass‐ceramics. Such novel phenomenon was elaborately investigated and is owing to the reduced multiphonon nonradiative relaxation and enhanced cross‐relaxation of Ho3+ in NaYbF4 nanocrystals after crystallization. Our results indicate that NaYbF4 transparent glass‐ceramics is an excellent host for upconversion.  相似文献   

9.
The sintering and crystallization of spodumene-cordierite glass-ceramics that are made from mixtures of Li2O-Al2O3-SiO2 (LAS) and MgO-Al2O3-SiO2(MAS) glass powders were investigated. Pure LAS and MAS powders have good sinterability. However, the densification of LAS was drastically reduced when small amounts of MAS were added. When larger amounts of MAS were added, the amount of densification further increased. The decrease in the Li2O content in the LAS glass promoted the densification of the mixed glass samples. The above-mentioned results can be explained by examining the crystallization temperature, which is influenced by the interactions between the LAS and MAS glass particles. The lower the temperature of crystallization, the less sintering occurred. For the sintered samples, the phase that crystallized from the MAS glass was alpha-cordierite, and that which crystallized from the LAS glass was ß-spodumene or high-quartz solid solution, depending on the Li2O content in the LAS glass.  相似文献   

10.
Pristine silica glass fiber is well‐known to become mechanically weaker when heat‐treated in air but the cause of such weakening is not presently known. The time dependence of mechanical degradation of various silica glass fibers containing varying impurity contents were studied in the range from 500°C to 1000°C. Two possible sources of strength degradation were considered: surface crystallization and water diffusion. Surface crystallization kinetics of silica glass fibers were investigated in a wide temperature range, including nanoscale surface nucleation at low temperatures via scanning electron microscopy. From the comparison of the strength degradation, surface crystallization, and water diffusion data in literature, it was concluded that surface crystallization may be responsible for the mechanical weakening observed in silica glass fiber surface during heat‐treatment at temperatures above ~800°C, whereas water diffusion into the glass surface may be responsible for the strength degradation at lower temperatures.  相似文献   

11.
Transparent MgO ceramics are successful fabricated via spark plasma sintering at lower temperature using the high sintering activity powders synthesized by precipitated method. The samples were detected by XRD, SEM, TEM, BET, UV-Vis-NIR, microhardness, and so on. The results show that all ceramics prepared at 700°C-900°C are visually transparent and the sample sintered at 860°C for 5 min exhibits the superior transmittance of 60% (800 nm). It is also found that the mechanical and thermal properties of MgO ceramics are all increasing firstly and then decreasing with the increase in the sintering temperature. And the maximum value of hardness, fracture toughness, MSP strength, and Young's modulus of MgO ceramics is 8.25 GPa, 2.01 MPa·m1/2, 206 MPa, and 286 GPa, respectively. Moreover, the thermal conductivity of MgO ceramics sintered at 860°C can reach 48.4 W/mK at room temperature.  相似文献   

12.
反应析晶烧结法制备硅灰石玻璃陶瓷   总被引:1,自引:1,他引:0  
刘贺  章为夷 《硅酸盐通报》2012,31(4):822-826,831
本文提出了一种直接利用废玻璃制备硅灰石玻璃陶瓷的新工艺:反应析晶烧结法。将高岭土和碳酸钙为主要原料合成的析晶促进剂加入到废玻璃粉末中烧结,通过两者间的反应析出硅灰石。研究了析晶促进剂含量和烧结温度对硅灰石玻璃陶瓷的组织、烧结和性能的影响,结果表明:随着析晶促进剂含量的增加,玻璃陶瓷的体密度和开孔隙率增加,强度先增后降。提高烧结温度促进反应析晶,并导致玻璃陶瓷的体密度、开孔隙率和强度降低。析晶促进剂含量为15%,烧结温度为850℃时,制得的硅灰石玻璃陶瓷的力学性能最佳。  相似文献   

13.
Transparent conducting electrodes attract attention in relation to solar cells, touch panels, displays, e‐readers, and transparent heaters. In many cases, rarefied metal nets with optical transmittance of ≈90% and with minimal sheet resistance are sought after. Here, a mesh of conducting polymer nanofibers is developed as a transparent conducting electrode. A sheet resistance of 8.4 kΩ sq−1 with 84% optical transmittance is achieved with polyethylene oxide/poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEO/PEDOT:PSS) blended polymer nanofibers. This study also demonstrates that such nanofiber being deposited on a glass substrate can be used as a transparent film heater in relevant applications such as window heating or displays at harsh environments. Such a transparent heater is rated at 0.41 W in.−2 for 120 V. It is also capable of heating a substrate up to ≈70 °C in 4 min at 60 V from room temperature without any degeneration of nanofiber network, rendering itself as a practically useful transparent heater. The performance of the PEO/PEDOT:PSS nanofiber‐coated transparent glass heater is comparable to that of the relatively expensive indium tin oxide thin‐film heaters.  相似文献   

14.
Transparent nanoceramics are attracting more and more interests recently, while it is practically difficult to prepare by conventional sintering process because of undesirable grain growth. In this study a new method of amorphous sintering followed by controlled crystallization (ASCC) was developed, and transparent LaAlO3/t-ZrO2 nanoceramics were prepared as examples. Glass powders from Al2O3-La2O3-ZrO2 (ALZ) were synthesized, sintered, and then converted to nanoceramics by post-heat-treatment. The processes of hot pressing and controlled crystallization were investigated in detail. The heat-treatment performed at 1200 °C for 2 h produced a transparent LaAlO3/t-ZrO2 nanoceramic with an average grain size of 40 nm. Due to the nanoscale microstructure, the composite showed a transparency up to 55% at 800 nm (1 mm thick), Vickers hardness of 19.05 GPa, and fracture toughness of 2.64 MPa m1/2, respectively. It is expected to be a promising candidate for window materials.  相似文献   

15.
以混凝土淤渣为主要原料制备了混凝土玻璃陶瓷,研究了混凝土玻璃陶瓷的烧结析晶特征及烧结工艺性能的影响。结果表明,随着烧结温度的提高和烧结时间的延长,材料烧结程度逐渐增大,但当烧结时间到达一定值后,收缩率逐渐趋向不变。烧结温度超过850℃后,材料体积收缩增长的速率降低,材料烧结的趋势将放缓;在低于850℃烧结时,玻璃中析出晶体的量较少,直到在950℃保温时钙铝黄长石相晶体才大量析出。材料的烧结温度和析晶温度相差100℃左右,这有利于控制烧结和析晶过程。同时以引入不同添加剂对混凝土淤渣玻璃陶瓷密度和颜色的影响也进行了探讨。  相似文献   

16.
Cr: YAG and Cr, Nd: YAG transparent ceramics have significant application prospects in solid state lasers, therefore a controllable charge state of Cr ion in Cr doped YAG transparent ceramics is necessary. In this study, a successful regulation of Cr charge state in both Cr, Nd: YAG and Cr: YAG transparent ceramics was achieved, by a simple optimizing the sintering additives. Both ceramics with the Cr doping concentration of 0.3?at% reached to the theoretical transmittance, after the vacuum sintering and the subsequent annealing process. It was found that by adopting silica additive, divalent charged Cr2+ ions could be detected from the vacuum sintered samples, and they were transferred into trivalent state after further annealing in air. Meanwhile, by vacuum sintering ceramics with divalent additives (CaO and MgO), a stable trivalent charged Cr ion could be obtained, and the subsequent air annealing process indicated a significant conversion from Cr3+ to Cr4+. Further increasing the Cr concentration was not benefit to the optical quality as well as the conversion of Cr3+ ion in Cr, Nd: YAG transparent ceramics.  相似文献   

17.
原位聚合沉积透明导电聚苯胺薄膜的研究进展   总被引:4,自引:0,他引:4  
苯胺在化学氧化聚合过程中,可自发地聚合沉积在不同基体表面,形成透明导电聚苯胺薄膜。重点介绍近年来国内外在玻璃、聚合物、纤维织物和二氧化硅基体表面原位聚合沉积透明导电聚苯胺薄膜的研究进展,并探讨了反应机理。展望了透明导电聚苯胺薄膜在光电器件和微电子器件领域的应用前景。  相似文献   

18.
《Ceramics International》2023,49(2):2183-2193
This work deals with the preparation of freeze-cast scaffolds using a bioactive glass from the SiO2–CaO–Na2O–P2O5–K2O–MgO system. This material could be sintered at lower temperatures (650 °C) than other variations of bioactive glasses, which is an important advantage in terms of energy and cost savings. This behavior represents a great advantage in terms of energy and cost savings. The freeze-casting step was conducted using water as a solvent and liquid nitrogen as a coolant. The prepared samples were examined according to their pore structure, thermal behavior, mechanical stability, and bioactivity. The glass transition temperature (Tg), crystallization onset temperature (Tx), and maximum crystallization temperature (Tc) evaluated for this bioactive glass were about 660 °C, 690 °C, and 705 °C. Consequently, the freeze-cast scaffolds could be sintered at 650 °C for 2–8 h, which favored viscous flow sintering without crystallization. Bioactivity assays were conducted by soaking the scaffolds in simulated body fluid for up to 21 days, showing that these materials present a bioactive behavior, inducing hydroxyapatite formation. These materials' mechanical properties and biocompatibility make them promising candidates for use in trabecular bone repair.  相似文献   

19.
Glass/ceramic composite materials based on CaF2–AlF3–SiO2 oxyfluoride glass and silica ceramic filler were prepared. The sintering behavior, phase composition and dielectric property of oxyfluoride glass/silica ceramic composites, as well as its compatibility with Ag electrode, were investigated. The results show that the glass/ceramic composite system can be sintered at 825 °C. When the amount of SiO2 increased from 0 to 20 wt.%, the shrinkage decreased from 17.0 to 14.5%, and the dielectric constant decreased from 5.9 to 5.4, while the thermal expansion coefficient (20–200 °C) increased from 6.0 to 10.1 ppm/°C. The sintered samples had low dielectric losses less than 0.002 and high flexural strengths. This novel glass/ceramic composite system exhibits good sintering compatibility with silver paste, which makes it a promising candidate for low temperature co-fired ceramic application.  相似文献   

20.
In this work, we report a facile method to prepare Eu2+ activated blue-emitting glass phosphor via loading Eu3+ into USY (Na28Si168Al28O384·240H2O, Si/Al ratio=6) zeolites’ cavities followed by thermal treatment in reducing atmosphere. The zeolites powders containing Eu3+ were treated at different temperatures from 800?°C to 1200?°C in flowing 5%H2 +?95%N2 ambient. The photoluminescence properties were investigated on aspects of the emission and excitation spectra, internal quantum efficiency (IQE), thermal stability and the fluorescence lifetime. The XRD patterns showed that the sample calcined at 950?°C was of pure glassy state. Under the broad 200–430?nm excitation, a strong blue emission band peaked at 451?nm with a full width of half maximum (FWHM) value of 74?nm was observed for this sample. Under the 365?nm excitation, the samples treated at different temperatures showed monotone red shift in the emission peak wavelengths with the thermal treatment temperature increasing. Transparent glass sheets were obtained from the glass phosphor powders by spark plasma sintering (SPS) at 1200?°C, 1250?°C and 1300?°C. The optical transmittance and thermal conductivity of transparent glass sheets were measured. The results indicated that this glass phosphor may be a potential candidate material for white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号