首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
《Ceramics International》2019,45(13):15892-15897
Cutting tools are widely used in industry and must be hard enough for machining processes, which should work appropriately at low temperatures to improve cutting speed and productivity. In this research, a numerical method was employed to calculate the temperature distribution in the cutting tools made of different diborides. Monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramics were selected for investigation and comparison studies. In this regard, 3-dimensional heat conduction equation was solved in a cutting tool with radiative, convective and heat flux boundary conditions by finite element method using COMSOL Multiphysics. This study clarifies that the maximum temperature in the tools made of ZrB2 and TiB2 among the monolithic ceramics is lower than that of HfB2. Moreover, the temperature variation slope versus time is the highest in HfB2. All composite materials reinforced with SiC showed lower maximum temperature than the monolithic ones. The thermal performance of TiB2–SiC and ZrB2–SiC composites was acquired to be better than that of the other investigated materials. The dominant heat transfer mechanism in the cutting tools was conduction.  相似文献   

2.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

3.
Microstructures were investigated for ZrB2–SiC and ZrB2–HfB2–SiC ultra high temperature ceramics that were subjected to a high temperature plasma environment. Both materials were tested in the MESOX facility to determine the recombination coefficient for atomic oxygen up to 1750 °C in subsonic air plasma flow. Surfaces were analyzed before and after testing to gain a deeper insight of the surface catalytic properties of these materials. Microstructural analyses highlighted oxidation induced surface modification. Oxide layers were composed of silica with trace amounts of boron oxide and zirconia if the maximum temperature was lower than about 1550 °C and zirconia for higher temperatures. The differences in the oxide layer composition may account for the different catalytic behavior. In particular, the presence of a borosilicate glass layer on the surface of ZrB2–SiC materials guarantees atomic oxygen recombination coefficients that are relatively lower than the coefficients measured when only zirconia is present. The oxidation processes of ZrB2–HfB2–SiC materials, associated with catalytic tests carried out up to 1550 °C, lead to the formation of hafnia as well as silica, and zirconia. The higher recombination coefficients measured in the case of ZrB2–HfB2–SiC materials can be correlated with the presence of hafnia which is probably characterized by higher catalytic activity compared to zirconia. In any case, the investigated materials demonstrate a low catalytic activity over the inspected temperature range with maximum values of recombination coefficients close to 0.1.  相似文献   

4.
Electrical resistivities, thermal conductivities and thermal expansion coefficients of hot-pressed ZrB2–SiC, ZrB2–SiC–Si3N4, ZrB2–ZrC–SiC–Si3N4 and HfB2–SiC composites have been evaluated. Effects of Si3N4 and ZrC additions on electrical and thermophysical properties of ZrB2–SiC composite have been investigated. Further, properties of ZrB2–SiC and HfB2–SiC composites have been compared. Electrical resistivities (at 25 °C), thermal conductivities (between 25 and 1300 °C) and thermal expansion coefficients (over 25–1000 °C) have been determined by four-probe method, laser flash method and thermo-mechanical analyzer, respectively. Experimental results have shown reasonable agreement with theoretical predictions. Electrical resistivities of ZrB2-based composites are lower than that of HfB2–SiC composite. Thermal conductivity of ZrB2 increases with addition of SiC, while it decreases on ZrC addition, which is explained considering relative contributions of electrons and phonons to thermal transport. As expected, thermal expansion coefficient of each composite is reduced by SiC additions in 25–200 °C range, while it exceeds theoretical values at higher temperatures.  相似文献   

5.
Raman spectroscopy and neutron diffraction were used to study the stresses generated in zirconium diboride–silicon carbide (ZrB2–SiC) ceramics. Dense, hot pressed samples were prepared from ZrB2 containing 30 vol% α-SiC particles. Raman patterns were acquired from the dispersed SiC particulate phase within the composite and stress values were calculated to be 810 MPa. Neutron diffraction patterns were acquired for the ZrB2–SiC composite, as well as pure ZrB2 and SiC powders during cooling from ~1800 °C to room temperature. A residual stress of 775 MPa was calculated as a function of temperature by comparing the lattice parameter values for ZrB2 and SiC within the composite to those of the individual powders. The temperature at which stresses began to accumulate on cooling was found to be ~1400 °C based on observing the deviation in lattice parameters between pure powder samples and those of the composite.  相似文献   

6.
We investigate the thermochemical stability of ZrB2–SiC based multiphase ceramics to hypersonic aerothermodynamic conditions in free piston shock tube with an objective to understand quantitatively the role of thermal shock and pressure. The developed ceramics sustained impulsive thermomechanical shock, under reflected shock pressure of 6.5 MPa and reflected shock temperature of 4160 K in dissociated oxygen, without structural failure. The conjugate heat transfer analysis predicts the surface temperature of ZrB2–SiC to reach a maximum of 693 and 865 K, for ZrB2–SiC–Ti. The transient shock-material response is characterized by surface oxidation of the investigated ceramics, when exposed to high enthalpy gaseous environment, as a consequence of the interaction with ultrafast-heated (106 K/s) gas for ~5 ms. Spectroscopic and structural characterization reveals that addition of Ti improves thermomechanical shock resistance, which is attributed to the assemblage of refractory phases. Taken together, ZrB2–SiC–Ti based multiphase ceramics exhibit favorable shock-material response under impulse loading.  相似文献   

7.
Laminated ZrB2–SiC ceramics with graphite and BN as the interface layers were fabricated by tape casting and consequent hot pressing. The influences of interface materials on the thermal shock resistance of the laminated ceramics were studied by both experimental and theoretical analyses. Experimental results show that the critical temperature differences of G/LZS (laminated ZrB2–SiC/G) and BN/LZS (laminated ZrB2–SiC/BN) were 237 and 99 °C, respectively. The stress gradients of G/LZS and BN/LZS calculated via finite element analysis were 709 and 809 MPa/mm, respectively. Thus, the thermal shock resistance of G/LZS was higher than that of BN/LZS. Such merits of G/LZS can be explained by the following two reasons: one is the thermal conductivity of the graphite interface layer was higher than that of the BN interface layer; the other is the difference of the thermal expansion coefficient for the graphite interface layer and the matrix layer was lower than that for the BN interface layer and the matrix layer.  相似文献   

8.
The stress-strain state of ZrB2-SiC ultra-high-temperature ceramics, produced using commercial powders with different impurity levels, was investigated by X-ray diffraction. Upon analysis of ZrB2 and SiC diffraction lines shift, the level of thermal stresses (strains) of the different phases was determined. An increase of internal stresses in ceramics with rising viscous-brittle transition temperatures, Tve, was attributed to increased grain boundary strength. Ceramics, for which high Tve and high level of internal stresses were estimated, exhibited high strength, up to 700 MPa at 1400 °C. A field of compressive thermal stresses in the matrix phase resulted to be necessary for achieving high strength at low-temperatures. On the contrary, the presence of low-melting impurities at the grain boundaries negatively impacted on the stress level in ZrB2 boundaries in the high temperature regime.  相似文献   

9.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

10.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

11.
Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0–5 wt%) and ZrB2–SiC composites (10–30 vol% SiC) were investigated experimentally over a wide range of temperature (25–1500 °C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2–SiC composites. At around 200 °C, thermal conductivity of ZrB2–SiC composites was found to be composition independent. Thermal conductivity of ZrB2–SiC composites was also correlated with theoretical predictions of the Maxwell–Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2–SiC composites at room temperature were confirmed by Wiedemann–Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2–SiC composites.  相似文献   

12.
《应用陶瓷进展》2013,112(8):478-486
Abstract

A processing method common to composite ceramics with very different ZrB2/SiC ratios was developed in order to exploit ZrB2–SiC laminates comprising alternate layers with different compositions for thermal protection systems of re-entry vehicles. Ceramic laminates were made using SiC, ZrB2 and composites with a SiC/ZrB2 ratio ranging from 100 vol.-%SiC to 100 vol.-%ZrB2. The preparation was performed by tape casting of a slurry, layer stacking, debinding and pressureless sintering. Boron and carbon proved to be suitable sintering aids for SiC laminates as well as for composite laminates containing SiC. In the case of composites with a ZrB2 matrix, the second phase of SiC acted as a sintering aid. This process obtains very similar densification for specimens with very different compositions (ranging from 100%SiC to 80ZrB2–20SiC). The stiffness of ZrB2–SiC laminates increased with the ZrB2 content increase, while the bending strength was not affected by the ZrB2/SiC ratio.  相似文献   

13.
In this work, the thermal shock behavior of laminated ZrB2–SiC ceramic has been evaluated using indentation‐quench method based on propagation of Vickers cracks and compared with the monolithic ZrB2–SiC ceramic. The results showed that the laminated ZrB2–SiC ceramic exhibited better resistance to crack propagation and thermal shock under water quenching condition, and the critical temperature difference (ΔTc) of laminated ZrB2–SiC ceramic (ΔTc ≈ 590°C) was much higher than that of monolithic ceramic (ΔTc ≈ 290°C). The significant improvement in thermal shock resistance was attributed to residual stresses enhancing the resistance to crack growth during thermal shock loading.  相似文献   

14.
Oxidation tests were carried out on HfB2–SiC, HfB2–HfC, HfB2–WC–SiC, and HfB2–WSi2 ceramics using an oxyacetylene torch. The samples were oxidized between 2100 and 2300 °C. From cross-sectional images, scale non-adherence was noted as a limiting factor in oxidation resistance. The sample with the best scale adherence was HfB2–WSi2. Factors involving scale non-adherence such as vapor pressure, coefficient of thermal expansion mismatch and phase transformations were considered. In comparing the scale adherence of the samples it was hypothesized that vapor pressure buildup is the principal contributing factor in the scale adherence differences observed among the tested samples. However, the coefficient of thermal expansion mismatch and HfO2 phase transformation cannot be neglected as contributing factors to scale non-adherence in all samples.  相似文献   

15.
ZrB2–SiC green ceramics were fabricated by aqueous gelcasting based on single AM‐MBAM, single Na‐alginate, and double gel network system. ZrB2–SiC ceramics obtained by aqueous gelcasting based on AM‐MBAM and Na‐alginate double gel network had a dramatically highest green strength of 98.6 ± 5.1 MPa, which was 103% and 61% higher than that of ZrB2–SiC ceramics based on single AM‐MBAM system and Na‐alginate system, respectively. A “scratch test” was conducted to evaluate the green machinability of as‐prepared ZrB2–SiC ceramics. The ZrB2–SiC ceramics based on this double gel network was found to have the best green machinability.  相似文献   

16.
Mechanical properties of ZrB2–SiC and ZrB2–ZrSi2–SiC ceramics in the temperature range from 20 to 1400 °C were studied. It was found that the introduction of zirconium silicide resulted in pore-free ceramics having bending strengths of 400–500 MPa over a wide range of boride–carbide compositions. Zirconium silicide additive did not lead to significant strength and hardness changes at low temperature, but essentially increased Weibull modulus, and, therefore, the reliability of the ceramics. However, zirconium silicide additions resulted in noticeably reduced bending strength in ZrB2–SiC based composites at 1400 °C.  相似文献   

17.
The oxidation behavior for ZrB2–20 vol% SiC (ZS20) and ZrB2–30 vol% SiC (ZS30) ceramics at 1500 °C was evaluated by weight gain measurements and cross-sectional microstructure analysis. Based on the oxidation results, laminated ZrB2–30 vol% SiC (ZS30)/ZrB2–25 vol% SiC (ZS25)/ZrB2–30 vol% SiC (ZS30) symmetric structure with ZS30 as the outer layer were prepared. The influence of thermal residual stress and the layer thickness ratio of outer and inner layer on the mechanical properties of ZS30/ZS25/ZS30 composites were studied. It was found that higher surface compressive stress resulted in higher flexural strength. The fracture toughness of ZS30/ZS25/ZS30 laminates was found to reach to 10.73 MPa m1/2 at the layer thickness ratio of 0.5, which was almost 2 times that of ZS30 monolithic ceramics.  相似文献   

18.
This study reviews densification behaviour, mechanical properties, thermal, and electrical conductivities of the ZrB2 ceramics and ZrB2-based composites. Hot-pressing is the most commonly used densification method for the ZrB2-based ceramics in historic studies. Recently, pressureless sintering, reactive hot pressing, and spark plasma sintering are being developed. Compositions with added carbides and disilicides displayed significant improvement of densification and made pressureless sintering possible at ≤2000 °C. Reactive hot-pressing allows in situ synthesizing and densifying of ZrB2-based composites. Spark plasma sintering displays a potential and attractive way to densify the ZrB2 ceramics and ZrB2-based composites without any additive. Young's modulus can be described by a mixture rule and it decreased with porosity. Fracture toughness displayed in the ZrB2-based composites is in the range of 2–6 MPa m1/2. Fine-grained ZrB2 ceramics had strengths of a few hundred MPa, which increased with the additions of SiC and MoSi2. The small second phase size and uniform distribution led to higher strengths. The addition of nano-sized SiC particles imparts a better oxidation resistance and improves the strength of post-oxidized ZrB2-based ceramics. In addition, the ZrB2-based composites showed high thermal and electrical conductivities, which decreased with temperature. These conductivities are sensitive to composition, microstructure and intergranular phase. The unique combinations of mechanical and physical properties make the ZrB2-based composites attractive candidates for high-temperature thermomechanical structural applications.  相似文献   

19.
Laminated ZrB2-SiC ceramics with residual surface compression were prepared by stacking layers with different SiC contents. The maximum apparent fracture toughness of these laminated ZrB2-SiC ceramics was 10.4 MPam1/2, which was much higher than that of monolithic ZrB2-SiC ceramics. The theoretical predictions showed that the apparent fracture toughness was strongly dependent on the position of the notch tip, which was confirmed by the SENB tests. Moreover, laminated ceramics showed a higher fracture load when the notch tip located in the compressive layer, whereas showed a lower fracture load as the notch tip within the tensile layer. The toughening effect of residual compressive stresses was verified by the appearance of crack deflection and pop-in event. The influence of geometrical parameters on the apparent fracture toughness and residual stresses was analyzed. The results of theoretical calculation indicated that the highest residual compressive stress did not correspond to the highest apparent fracture toughness.  相似文献   

20.
Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra high temperature ceramics (UHTCs) have been measured at temperatures from room temperature to 2000 °C and compared with SiC-doped ZrB2- and HfB2-based UHTCs and monolithic ZrB2 and HfB2. Thermal conductivities of La2O3-doped UHTCs remain constant around 55–60 W/mK from 1500 °C to 1900 °C while SiC-doped UHTCs showed a trend to decreasing values over this range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号