首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(12):16554-16561
Herein, we report the solid-state synthesis of (KMg)xFe2-xMo3O12 (0 = x ≤ 1.5) ceramics. Phase composition, crystal structure, morphology, phase transition and thermal expansion behavior of the (KMg)xFe2-xMo3O12 ceramics were investigated by XRD, Raman, XPS, HRTEM, EDX, SEM, TMA and high-temperature XRD. Results indicate that (KMg)3+ dual-cations have successfully replaced Fe3+ in Fe2Mo3O12 ceramics and single-phase monoclinic (KMg)xFe2-xMo3O12 ceramics were prepared for 0.25 = x ≤ 1. (KMg)3+ introduction can increase the density of (KMg)xFe2-xMo3O12 ceramics and effectively improve their negative thermal expansion (NTE) performance. In addition, the phase transition temperature (Tc) of Fe2Mo3O12 was reduced from 508.1 °C to room temperature with the increase of (KMg)3+-substitution. Monoclinic KMgFeMo3O12 ceramics was observed to show stronger NTE in a wider temperature range of 30–700 °C for the first time. Its corresponding coefficient of thermal expansion (CTE) is as high as ?17.21 × 10?6 °C?1. The distortion of [FeO6/MgO6] polyhedra in (KMg)xFe2-xMo3O12 caused by (KMg)3+-substitution contributed to the stronger NTE.  相似文献   

2.
《Ceramics International》2022,48(20):30135-30143
In this work, Sc2Mo3O12 has been synthesized via one-pot hydrothermal reaction. The effects of process conditions on the crystal structure, morphology, photocatalytic activity and negative thermal expansion (NTE) behaviors of flower-like Sc2Mo3O12 were systematically investigated. Results indicate that orthorhombic flower-like Sc2Mo3O12 assembled by nano-size flaky crystal grains can be synthesized by one-pot hydrothermal reaction at a temperature as low as 120 °C for 2 h. The hydrothermal reaction temperature and time have no obvious effects on the crystal structure and morphology. However, the photocatalytic property of synthesized Sc2Mo3O12 is sensitive to the above parameters. The sample synthesized at 200 °C for 2 h shows the best photocatalytic degradation of methyl orange, and the degradation rate is 73.32% in 2 h 1The coefficient of thermal expansion (CTE) of Sc2Mo3O12 is ?1.99 × 10?6 °C?1 in 50–500 °C tested using TMA. The high-temperature XRD analysis reveals that Sc2Mo3O12 exhibits anisotropic NTE and the intrinsic CTE is measured to be ?2.09 × 10?6 °C?1 in 25–800 °C.  相似文献   

3.
《Ceramics International》2015,41(8):9873-9877
Solid solutions of In2−xScxW3O12 (0≤x≤2) were successfully synthesized using the solid state reaction method. Effects of substituted scandium content on the phase composition, microstructure, phase transition temperatures and thermal expansion behaviors of the resulting In2−xScxW3O12 (0≤x≤2) samples were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermal mechanical analyzer (TMA). Results indicate that the obtained In2W3O12 ceramic undergoes a structure phase transition from monoclinic to orthorhombic at 248 °C. This phase transition temperature of In2W3O12 can be easily shifted to a lower temperature by partly substituting the In3+ with Sc3+. When the x value increased from 0 to 1, the phase transition temperatures of In2−xScxW3O12 (0≤x≤2) samples decreased from 248 to 47 °C. All the In2−xScxW3O12 (0≤x≤2) ceramics show fine negative thermal expansion below their corresponding phase transition temperatures. The negative thermal expansion coefficients of the In2−xScxW3O12 (0≤x≤2) ceramics change in the range from −1.08×10−6 °C−1 to −7.13×10−6 °C−1.  相似文献   

4.
Orthorhombic Sc2Mo3O12 films have been successfully prepared via spin coating technique followed by annealing at 500–750 °C. The phase composition, microstructure, morphology and negative thermal behavior of the synthesized Sc2Mo3O12 films were investigated. XRD and XPS analysis indicate that as-deposited film is amorphous. Orthorhombic Sc2Mo3O12 films can be prepared after post-annealing at 500–750 °C for 1 h. The crystallinity of Sc2Mo3O12 films gradually improved with the increase of post-annealing temperature. SEM analysis shows as-deposited film is smooth and compact, and the grain size of Sc2Mo3O12 film grows up as the post-annealing temperature increases. Variable temperature XRD analysis demonstrates that the synthesized orthorhombic Sc2Mo3O12 films show stable thermo-chemical and anisotropic NTE property in 25–700 °C. The corresponding coefficients of thermal expansion (CTEs) of the orthorhombic Sc2Mo3O12 film in a, b and c directions are ?6.68 × 10?6 °C?1, 5.08 × 10?6 °C?1 and ?4.76 × 10?6 °C?1, respectively. The whole unit cell of the orthorhombic Sc2Mo3O12 film shrinks and the volumetric CTE of the Sc2Mo3O12 thin film is ?6.36 × 10?6 °C?1, and the linear CTE is about ?2.12 × 10?6 °C?1 (αv = 3αl).  相似文献   

5.
《Ceramics International》2023,49(5):7842-7852
Thermal barrier coatings with excellent thermal performance and corrosion resistance are essential for improving the performance of aero-engines. In this paper, (Y3-xYbx)(Al5-xScx)O12 (x = 0, 0.1, 0.2, 0.3) thermal barrier coating materials were synthesized by a combination of sol-gel method and ball milling refinement method. The thermal properties of the (Y3-xYbx)(Al5-xScx)O12 ceramics were significantly improved by increasing Yb and Sc doping content. Among designed ceramics, (Y2.8Yb0.2)(Al4.8Sc0.2)O12 (YS-YAG) showed the lowest thermal conductivity (1.58 Wm?1K?1, at 800 °C) and the highest thermal expansion coefficient (10.7 × 10?6 K?1, at 1000 °C). In addition, calcium-magnesium- aluminum -silicate (CMAS) corrosion resistance of YS-YAG was further investigated. It was observed that YS-YAG ceramic effectively prevented CMAS corrosion due to its chemical inertness to CMAS as well as its unique and complex structure. Due to the excellent thermal properties and CMAS corrosion resistance, YS-YAG is considered to be prospective material for thermal barrier coatings.  相似文献   

6.
《Ceramics International》2021,47(24):34687-34694
To improve the negative thermal expansion (NTE) performance of ln2W3O12, a novel series of NTE (KMg)xln2-xW3O12 ceramics were fabricated via the solid-state method. The effects of (KMg)3+ substitution on the phase composition, microstructure and thermal expansion property of the ln2W3O12 ceramics were characterized using X-ray diffraction (XRD), Raman spectrometer (Raman), X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and thermal mechanical analyzer (TMA). Results indicate that (KMg)3+ can partially replace In3+ in In2W3O12 and form a new phase KxMgxln2-xW3O12 with monoclinic symmetry. For x = 0.5, pure monoclinic (KMg)0.5ln1.5W3O12 ceramics is prepared and shows strong NTE. Its coefficient of thermal expansion is −7.89 × 10−6 °C−1 in 30–700 °C, in addition, no phase transition was observed over the entire testing temperature range. These research results indicate that double cations co-substitution is an effective strategy to improve the NTE property of ln2W3O12 through crystal structure modulation. This strategy could be extended to the performance modulation of other NTE materials.  相似文献   

7.
《Ceramics International》2020,46(6):7259-7267
Co-precipitation was successfully applied to synthesize the Sc3+ doped In2-xScx (WO4)3 (x = 0, 0.3, 0.6, 0.9 and 1.2) compounds. The composition- and temperature-induced structural phase transition and thermal expansion behaviors of Sc3+ doped In2(WO4)3 were investigated. Results indicate that In2-xScx (WO4)3 crystalizes in a monoclinic structure at 300 °C for x ≤ 0.3 and changes into hexagonal structure for x ≥ 0.6. Hexagonal In1.1Sc0.9(WO4)3 displays negative thermal expansion (NTE) with an average linear coefficient of thermal expansion (CTE) of −1.85 × 10−6 °C −1. After sintering at 700 °C and above, a phase transition from hexagonal to orthorhombic phase was observed in In2-xScx (WO4)3 (x ≥ 0.6). Sc3+ doping successfully reduce the temperature-induced phase transition temperature of In2-xScx (WO4)3 ceramics from 250 °C (x = 0) to room temperature (x = 0.9). When x = 0.9 and 1.2, the average linear CTEs of In2-xScx (WO4)3 ceramics are −5.45 × 10−6 °C−1 and -4.43 × 10−6 °C−1 in a wider temperature range of 25–700 °C, respectively.  相似文献   

8.
《Ceramics International》2023,49(19):31627-31633
Orthorhombic In0.5Sc1.5Mo3O12 nanofibers were prepared by electrospinning followed by a heat treatment. The effects of post-annealing temperatures on the phase composition, microstructure and morphology were investigated by XRD, SEM, HRTEM and XPS. Negative thermal expansion (NTE) behaviors of the In0.5Sc1.5Mo3O12 nanofibers were analyzed by high-temperature XRD. Results indicate that the as-prepared In0.5Sc1.5Mo3O12 nanofibers show an amorphous structure with smooth and homogeneous shape. The average diameter of the as-prepared In0.5Sc1.5Mo3O12 nanofibers is around 515 nm. Well crystallized orthorhombic In0.5Sc1.5Mo3O12 nanofibers could be prepared after post-annealing at 550 °C for 2 h with an average diameter of about 192 nm. The crystallinity of In0.5Sc1.5Mo3O12 nanofibers gradually improved with the increase of annealing temperature. However, too high post-annealing temperature leads to a damage of sample's fiber structure. The high-temperature XRD results reveal that In0.5Sc1.5Mo3O12 nanofibers show an anisotropic NTE, and the coefficients of thermal expansion (CTEs) along a-axis and c-axis were −5.95 × 10−6 °C−1 and -3.54 × 10−6 °C−1, while the one along b-axis is 5.61 × 10−6 °C−1. The volumetric CTE of In0.5Sc1.5Mo3O12 nanofibers is −3.90 × 10−6 °C−1 and the linear one is 1.3 × 10−6 °C−1 in 25–700 °C.  相似文献   

9.
A new series of rare earth solid solutions Sc2−xYxW3O12 was successfully synthesized by the conventional solid-state method. Effects of doping ion yttrium on the crystal structure, morphology and thermal expansion property of as-prepared Sc2−xYxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TG), field emission scanning electron microscope (FE-SEM) and thermal mechanical analyzer (TMA). Results indicate that the obtained Sc2−xYxW3O12 samples with Y doping of 0≤x≤0.5 are in the form of orthorhombic Sc2W3O12-structure and show negative thermal expansion (NTE) from room temperature to 600 °C; while as-synthesized materials with Y doping of 1.5≤x≤2 take hygroscopic Y2W3O12·nH2O-structure at room temperature and exhibit NTE only after losing water molecules. It is suggested that the obvious difference in crystal structure leads to different thermal expansion behaviors in Sc2−xYxW3O12. Thus it is proposed that thermal expansion properties of Sc2−xYxW3O12 can be adjusted by the employment of Y dopant; the obtained Sc1.5Y0.5W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.00683×10−6 °C−1 in the 25–250 °C range.  相似文献   

10.
《Ceramics International》2023,49(20):33051-33056
Transverse vibrations of bridging atoms in framework structure oxides contribute to negative thermal expansion (NTE), increasing the configurational entropy. Herein, the configurational entropy of NTE (Al1/3Fe1/3Cr1/3)2Mo3O12 (AFCM) is tuned by introducing ZrMg and W to AlFeCr and Mo sites to lower NTE. The NTE of ((Zr1/2Mg1/2)x(Al1/3Fe1/3Cr1/3)(1-x))2Mo3O12 (ZMAFCM) reduce obviously with increasing the content of ZrMg and also the phase transition temperatures (PTTs) (x = 0∼0.5). For ((Zr1/2Mg1/2)x(Al1/3Fe1/3Cr1/3)(1-x))2(Mo1/2W1/2)3O12 (ZMAFCMW), the NTE and PTTs reduce at a faster rate than that of ZMAFM. The configurational entropy increases with the content of ZrMg firstly (x = 0∼0.4) and then decreases. The possible mechanism of thermal expansion change is related to the enhanced lattice configuration, high entropy. The inconsistent transverse vibrations of bridging oxygen atoms could reduce their contribution to NTE, especially for high entropy. The PTT of high configurational entropy oxides is reduced obviously due to the influenced on the effective electronegativity. The investigation paves a high entropy way to lower thermal expansion and PTT of A2M3O12 oxide ceramics and explores the further mechanism of NTE.  相似文献   

11.
《Ceramics International》2022,48(15):21125-21133
Solid solutions of Zr1+xMn1-xMo3-2xV2xO12 (0 ≤ x ≤ 0.5) are developed with reduced phase transition temperature (from 362 to 160 K) by introducing V5+ into ZrMnMo3O12. Zr1+xMn1-xMo3-2xV2xO12 adopt monoclinic (P21/a) and orthorhombic (Pbcn) structure at room temperature (RT) for x ≤ 0.1 and x ≥ 0.2, respectively. The formation of bond V–O induces a larger average effective negative charge on oxygen to enhance the repulsive force between them and then strengthens the bond of Mo–O, which reduces the phase transition temperature due to the reduction in effective electronegativity and expands negative thermal expansion (NTE) range covering RT. NTE property in a wide temperature range (from 160 to 673 K) for Zr1.5Mn0.5Mo2VO12 is realized, implying great potential for applications. The NTE property of the materials is induced by low-frequency phonons.  相似文献   

12.
《Ceramics International》2021,47(20):28892-28903
LaMgAl11O19-type magnetoplumbite holds great promise to be used above 1300 °C as thermal barrier coatings (TBCs), but its practical application has been restricted because of inferior thermophysical properties. Herein, we focus on optimizing the thermophysical properties of LaMgAl11O19 by simultaneously substituting La3+ and Al3+ ions with Nd3+ and Sc3+ ions, respectively. Results show that the effects of co-substitution on reducing thermal conductivity are pronounced. The thermal conductivities of La1-xNdxMgAl11-xScxO19 (x = 0, 0.1, 0.2, 0.3) ceramics decrease progressively with dopant concentration and a lowest thermal conductivity of 2.04 W/(m·K) is achieved with x = 0.3 at 1000 °C, which is a value superior to pure LMA and even lower than YSZ. The mechanisms behind the lowered thermal conductivity are investigated. Increase of the thermal expansion coefficient is also realized (8.53 × 10−6 K−1 for pure LMA, 9.07 × 10−6 K−1 for x = 0.3, 1300 °C). Most importantly, Nd3+ and Sc3+ combination doping indeed facilitates mechanical properties of La1-xNdxMgAl11-xScxO19 solid solutions as well. It should be noted that Sc3+ doping at Al3+ site plays more effective role in improving thermal properties than Nd3+ does at La3+ site. This work provides a path to simultaneously integrate low thermal conductivity, good phase stability, moderate thermal expansion behavior and excellent mechanical properties on LMA for the next generation TBCs.  相似文献   

13.
Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors were synthesized through high temperature solid state method. Under 980 nm laser excitation, the Lu2W2.5Mo0.5O12: Er3+/Yb3+ compounds show thermal enhancement of up-conversion luminescence (UCL), which is attributed to the lattice contraction and distortion from negative thermal expansion (NTE) of Lu2W2.5Mo0.5O12 host enhancing the energy transfer of Yb3+ to Er3+, eliminating the energy transfer of Er3+ to Er3+ through Er3+ single-doped Lu2W2.5Mo0.5O12 phosphors without thermal enhancement of UCL. The green luminescence intensities at 693 K of the Lu1.98-xW2.5Mo0.5O12: 0.02Er3+, xYb3+ (x = 0.2, 0.3, 0.4) samples are 4.6, 4.3 and 7.0 times as that of 302 K, respectively. And through fluorescence intensity ratio (FIR) technique, the corresponding maximum absolute sensitivities are 0.00741, 0.00744 and 0.00723, respectively. The green monochromaticity of UCL spectra in Er3+/Yb3+ co-doped samples increase with the increasing of temperature, and the possible UCL mechanism with temperature was discussed. The results indicate that the Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors can be applied at a high temperature as optical thermometer with a good green monochromaticity.  相似文献   

14.
A new series of rare earth solid solutions Yb2?xLaxW3O12 were successfully synthesized by the solid-state method. Effects of substituted ion lanthanum on the microstructures and thermal expansion properties in the resulting Yb2?xLaxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analyzer (TGA), field emission scanning electron microscope (FESEM) and thermal mechanical analyzer (TMA). Results indicate that the structural phase transition of the Yb2?xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phases can form in the composition range of 0  x < 0.5 with orthorhombic structure and 1.5 < x  2 with monoclinic one. High lanthanum content leads to a low hygroscopicity of Yb2?xLaxW3O12. Negative thermal coefficients of the Yb2?xLaxW3O12 (0  x  2) also vary from ?7.78 × 10?6 K?1 to 2.06 × 10?6 K?1 with increasing substituted content of lanthanum.  相似文献   

15.
《Ceramics International》2022,48(24):36469-36477
Sr11Mo4O23(SMO) material has a double-layer perovskite superstructure, which exhibits unusual structural flexibility and oxygen ion mobility. However, the Sr11Mo4O23 cubic phase will transform into SrMoO4 tetragonal phase at 400 °C, which leads to a sharp decrease in conductivity. In order to solve this problem, Ta doped Sr11Mo4-xTaxO23-δ (SMTO, 0 ≤ x ≤ 1.25) electrolytes were synthesized by a route combining the Pechini method and solid-state reaction. The effects of acceptor-type Ta5+ doping on the structural stability, micro-scale structure and ionic conductivity of SMO are characterized by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and electrochemical impedance spectroscopy. All Sr11Mo4-xTaxO23-δ powders are single-phase and no secondary phase is detected. Moreover, the phase transition of Sr11Mo4O23 to SrMoO4 is highly inhibited by partially replacing Mo with Ta (x ≥ 0.50) during the heat treatment, and the Sr11Mo4O23 cubic phase with high conductivity may be maintained for a long time at 800 °C. The total ionic conductivity of Sr11Mo4-xTaxO23-δ samples increases with increasing the Ta concentration, and then declines at higher doping content (x = 1.25). The ionic conductivity of Sr11Mo3TaO23-δ (SMTO100) pellet is the highest, reaching 1.44 × 10?2 S/cm at 800 °C. More remarkably, the conductivity of STMO100 pellet remains at its peak during the 100 h annealing test at the temperature of 800 °C.  相似文献   

16.
Lanthanum molybdate, La2Mo2O9, has been attracted considerable attention owing to its high concentration of intrinsic oxygen vacancies, which could be reflected by enhanced phonon scattering and low thermal conductivity. A new series of La2Mo2O9‐based oxides of the general formula La2?xSmxMo2?xWxO9, where x ≤ 0.2, were synthesized by citric acid sol–gel process. The variation in thermal conductivity with Sm3+and W6+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The fully dense La2?xSmxMo2?xWxO9 ceramics showed a minimum thermal conductivity value [κ = 0.84 W·(m·K)?1,T = 1073 K] at the composition of La1.8Sm0.2Mo1.8W0.2O9, which stems from the multiple enhanced phonon scatterings due to mass and strain fluctuations at the La3+ and Mo6+ sites as well as the high concentration of intrinsic oxygen vacancies embedded in the crystal lattice. The thermal conductivities present an abrupt decrease at the structural transition, which is due to the phase transformation from a low‐temperature ordered form (monoclinic α‐La2Mo2O9) to a high‐temperature disordered form (cubic β‐La2Mo2O9).  相似文献   

17.
In(HfMg)0.5Mo3O12, which can be considered as a 1:1 mole ratio solid solution of the low‐positive thermal expansion material HfMgMo3O12 and the low‐negative thermal expansion (NTE) material In2Mo3O12 was prepared. From DSC and XRPD results, we show that In(HfMg)0.5Mo3O12 exists in a monoclinic (P21/a) structure at low temperature and undergoes a phase transition at ~425 K to an orthorhombic phase (Pnma), with an associated enthalpy change of 0.89 kJ mol?1. Thermal expansion is large and positive in the low‐temperature monoclinic phase (average α? = 16 × 10?6 K?1 and 20 × 10?6 K?1, from dilatometry and XRPD, respectively). Remarkably, this material has a near‐zero thermal expansion (ZTE) coefficient over the temperature range ~500 to ~900 K in the high‐temperature orthorhombic phase, both intrinsically and for the bulk sample. The average linear intrinsic (XRPD) value is α? = ?0.4 × 10?6 K?1, and the average bulk (dilatometric) value is α? = 0.4 × 10?6 K?1 with an uncertainty of ± 0.2 × 10?6 K?1. The slight difference between intrinsic and bulk thermal expansion is attributed to microstructural effects. XRPD results show that the thermal expansion is more isotropic than for the parent compounds HfMgMo3O12 and In2Mo3O12.  相似文献   

18.
《Ceramics International》2023,49(4):6077-6085
Solid-phase method was used to synthesize MgMo1-xWxO4 (x = 0–0.15) ceramics. The influences of substitution Mo6+ with W6+ on crystal structure, vibration characteristics and microwave dielectric properties of MgMo1-xWxO4 ceramics were comprehensively studied. X-Ray diffraction illustrated all samples exhibit single-phase monoclinic wolframite structure when x = 0–0.15, in which W6+ replaces Mo6+ sites formed solid solution. W6+ effectively improves sintering properties of the MgMoO4, the average grain size and relative density were increased. Raman characterization reveals that suitable W6+ substitution amount leads to reduction of v1 Ag peaks FWHM and the enhancement of specific v3 Ag peak for Mo/WO4 tetrahedron, which improves the ordered distribution of the crystal structure. The above combined effect results in the increased Q × f value, but has little influence of W6+ substitution on εr and τf for MgMoO4. When x = 0.09, MgMo0.91W0.09O4 ceramic sintered at 1050 °C has optimal microwave dielectric performance: εr = 7.21, Q×f = 90,829 GHz, τf = ?67 ppm/°C.  相似文献   

19.
《Ceramics International》2017,43(15):12013-12017
Sc-substituted In2−xScx(MoO4)3 (0 ≤ x ≤ 2) ceramics were successfully synthesized by the solid state reaction method with the goal of tuning the phase transition temperature. Effects of Sc3+ substitution on the phase composition, microstructure, phase transition temperature and thermal expansion behavior of the In2−xScx(MoO4)3 (0 ≤ x ≤ 2) ceramics were investigated using XRD, FESEM, EDX, XPS and TMA, respectively. The results indicate that all samples are single phase. The relative densities of the In2−xScx(MoO4)3 ceramics increased gradually with increasing Sc3+ content. Investigations on thermal expansion properties of the In2−xScx(MoO4)3 ceramics reveal that the temperature-induced phase transition from monoclinic to orthorhombic symmetry is strongly correlated to the Sc3+ content. The obtained In2(MoO4)3 ceramics undergoes a structural phase transition from monoclinic to orthorhombic around 355.3 °C. The phase transition temperature can be significantly shifted from 355.3 °C (x = 0) to 31.9 °C (x = 1.5) by partially replacing In3+ cations with less electronegative Sc3+ cations. All In2−xScx(MoO4)3 (0 ≤ x ≤ 2) ceramics exhibit strong negative thermal expansion above the phase transition temperature. In0.5Sc1.5(MoO4)3 exhibits linear NTE over the 100–700 °C temperature range with a linear coefficient of thermal expansion of −3.99 × 10−6 °C −1.  相似文献   

20.
Negative thermal expansion (NTE) performance of Fe2(MoO4)3 is only found in a high-temperature range due to its monoclinic-to-orthorhombic (M-O) phase transformation temperature (PTT) at 503.5°C. To stabilize the orthorhombic phase of Fe2(MoO4)3 at room temperature, a series of Fe2-xScx(MoO4)3 (0≤x≤1.5) (abbreviated as F2-xSxM) were fabricated via solid-state reaction. Results indicate that the M-O PTT of Fe2(MoO4)3 is successfully reduced from 503.5°C to 34.5°C by A-site cation substitution of Sc3+. The regulation mechanism is considered to be the decrease in electronegativity of (Fe2-xScx)6+ in F2-xSxM. Both variable temperature X-ray diffraction (XRD) and thermal mechanical analysis (TMA) analysis results indicate that F0.5S1.5 M exhibits anisotropic NTE in 100–700°C. The results indicate that it can effectively improve the densification of Sc-substituted F0.5S1.5 M ceramics by two-step calcination process. Furthermore, higher second-step calcination temperature is beneficial for the formation of single-phased orthorhombic F0.5S1.5 M. The NTE response temperature range of F0.5S1.5 M ceramics second-step sintered at 1000°C is broadened to 30–600°C, and the corresponding coefficient of thermal expansion is -5.74 × 10−6°C−1. The ease in the proposed design and preparation method makes NTE F0.5S1.5 M potential for a wide range of applications in precision mechanical, electronic, optical, and communication instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号