首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨佳颖  李汀  解培中 《信号处理》2021,37(8):1441-1451
传统蜂窝网络中,多址接入技术起着尤为关键的作用,与正交多址(Orthogonal Multiple Access,OMA)技术相比,非正交多址(Non-Orthogonal Multiple Access,NOMA)能够支持的用户数量远远超过可用正交资源的数量,可以达到更高的频谱效率和用户公平性.因此,为提高异构蜂窝网...  相似文献   

2.
Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attracted wide attention.In this paper,a relaying D2D communications assisted with cooperative relaying systems using NOMA(DRC-NOMA)is considered.We analyze the ergodic sum-rate for the proposed system and then derive the closed-form expressions.In addition,an optimal power allocation strategy maximizing the ergodic sum-rate is proposed based on these analysis results.Numerical results show the good agreement between the results of analysis and Monte Carlo method.The proposed DRC-NOMA has a great improvement of the ergodic sum-rate in the small regime of average channel gain of D2D pair.  相似文献   

3.
This paper puts forward a user clustering and power allocation algorithm for non-orthogonal multiple access (NOMA) based device-to-device (D2D) cellular system. Firstly, an optimization problem aimed at maximizing the sum-rate of the system is constructed. Since the optimization problem is a mixed-integer non-convex optimization, it is decomposed into two subproblems, namely user clustering and power allocation subproblem. In the subproblem of user clustering, the clustering algorithms of cellular user and D2D pair are proposed respectively. In the power allocation subproblem, the gradient assisted binary search (GABS) algorithm and logarithmic approximation in successive convex approximation (SCA) are used to optimize the power of subchannel (SC) and D2D transmitted power respectively. Finally, an efficient joint iterative algorithm is proposed for the original mixed inter non-convex non-deterministic polynomial (NP)-hard problem. The simulation results show that the proposed algorithm can effectively improve the total system rate and the larger the ratio of cellular users (CUs) to total users, the larger the total system rate.  相似文献   

4.
迟琳曼  朱琦 《信号处理》2019,35(2):258-265
本文针对两阶段NOMA(Non-Orthogonal Multiple Access)-D2D((Device-to-Device)辅助中继场景提出了一种功率优化算法,推导分析了各用户的中断概率。构建了以最大化系统各态历经容量为目标的优化问题,由于一、二两阶段通信用户的差异性,重点优化了对提升系统容量起决定作用的第一阶段功率分配因子,分析证明了原优化问题存在极值点,并利用凸函数性质获得了优化的功率分配因子,并且进一步推导分析了各个用户的中断概率。仿真结果表明,理论推导的中断概率值与仿真结果完全一致,证明了推导的正确性,本文提出的功率优化算法能显著提高系统容量,且降低了中断概率。例如当SNR为35dB时,本文算法可以提高约17.6%的系统容量,而作为辅助中继用户的中断概率大约降低了81.3%。   相似文献   

5.
吴舒婷  贺玉成  张良梅  周林 《信号处理》2022,38(5):1001-1008
该文研究了D2D辅助的协作中继NOMA(DC-NOMA)网络,在中继用户(RU)转发信息的第二时隙,利用RU到蜂窝中心用户(CCU)的D2D通信链路传输新的信号。为了提高传输可靠性,设计了新的信号检测策略,通过完全利用边缘信息消除了用户间的干扰。基于新的信号检测策略,提出了一种两阶段中继选择策略(TSRS)。在满足蜂窝边缘用户(CEU)可靠接收的中继集合中,选择使CCU成功解码概率最大的中继。为了评估所提出的DC-NOMA方案,推导了每个用户的确切中断概率且通过仿真得到验证。仿真结果表明,在高信噪比区域,该文所提出的基于新的信号检测策略的DC-NOMA在TSRS方案下的中断性能优于部分中继选择方案(PRSS)和传统的DC-NOMA。特别地,增大中继数量可有效提高DC-NOMA系统的中断性能。   相似文献   

6.
2D piezoelectric materials such as transition metal dichalcogenides are attracting significant attention because they offer various benefits over bulk piezoelectrics. In this work, the fabrication of layered biomolecular crystals of diphenylalanine (FF) obtained via a co-assembly of l,l - and d,d - enantiomers of FF monomers is reported. Their crystal structure, thermal and chemical stabilities, and piezoelectric properties are investigated. Single crystal X-ray diffraction results show that FF enantiomers are arranged in the form of bilayers consisting of monomers with alternating chirality packed into a tape-like monoclinic structure belonging to a polar space group P21. Each bilayer ( ≈ 1.5 nm thick) demonstrates strong out-of-plane piezoelectricity (d33  ≈  20 pm V−1) that is almost an order of magnitude higher than in the archetypical piezoelectric material quartz. The grown crystals demonstrate better thermal and chemical stabilities than self-assembled hexagonal FF nanotubes studied in the past. Piezoelectric bilayers, being held via weak aromatic interaction in the bulk crystals, can be exfoliated by mechanical or chemical methods, thus resulting in a 2D piezoelectric material, which can find various applications in biocompatible and ecologically friendly electromechanical microdevices, such as sensors, actuators, and energy harvesting elements used in implantable and wearable electronics.  相似文献   

7.
This investigation confirms that silver stearate consists of an infinite‐sheet, two‐dimensional, nonmolecular layered structure. Scanning electron microscopy, X‐ray diffraction, and infrared spectroscopy reveal the following: plate‐like morphology is identified from the SEM image, XRD peaks can be indexed to the (0k0) reflections of a layered structure, and infrared peaks show that alkyl chains are present in an all‐trans conformational state with little or no significant gauche population. Based on these structural characteristics, we demonstrate that silver stearate, a prototype of layered organic‐inorganic hybrid material, can be grown not only in a designed two‐dimensional pattern but also in three‐dimensionally ordered ways by using carboxyl‐group terminated nanoparticles as a template.  相似文献   

8.
Van der Waals heterostructures (vdWHs) based on 2D layered materials with selectable materials properties pave the way to integration at the atomic scale, which may give rise to fresh heterostructures exhibiting absolutely novel physics and versatility. This feature article reviews the state‐of‐the‐art research activities that focus on the 2D vdWHs and their optoelectronic applications. First, the preparation methods such as mechanical transfer and chemical vapor deposition growth are comprehensively outlined. Then, unique energy band alignments generated in 2D vdWHs are introduced. Furthermore, this feature article focuses on the applications in light‐emitting diodes, photodetectors, and optical modulators based on 2D vdWHs with novel constructions and mechanisms. The recently reported novel constructions of the devices are introduced in three primary aspects: light‐emitting diodes (such as single defect light‐emitting diodes, circularly polarized light emission arising from valley polarization), photodetectors (such as photo‐thermionic, tunneling, electrolyte‐gated, and broadband photodetectors), and optical modulators (such as graphene integrated with silicon technology and graphene/hexagonal boron nitride (hBN) heterostructure), which show promising applications in the next‐generation optoelectronics. Finally, the article provides some conclusions and an outlook on the future development in the field.  相似文献   

9.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   

10.
Layered 2D perovskites are solution-processed quantum-wells. Their effective band-gap is determined via the inorganic perovskite layer thickness and exciton quantum confinement effects. Alternatively, by changing the organic moieties, one can tune the dielectric constant and distance between the monolayers modifying the excitonic interactions. In colloidal perovskites, a dynamic equilibrium exists between the free organic moieties in the solution and the surface of the nanocrystal. Colloidal synthesis is used to make single monolayer L2PbBr4 platelets and assemble these into layered 2D stacks. In the experiment, L is an alkylamine surface ligand whose length (4-18 carbons) determines the interlayer distances between the quantum-wells. The dynamic equilibrium of ligand mixtures in solution and perovskite surfaces leads to optimal mixing of the molecules. During the self-assembly of monolayers, the distance between the inorganic layers is thus engineered. The interlayer distance is proportional to the average ligand mixture length. This results in controlled interactions between the 2D-excitons, enabling red-shifted absorption and emission and extended lifetimes for longer alkyl chains. Using entropic mixing of ligands for the engineering of 2D excitonic interactions is therefore demonstrated. Formation of layered 2D perovskites from colloidal building blocks allows intermixing of dissimilar materials opening possibilities for new heterostructures and junctions.  相似文献   

11.
In this paper, we present two layered multiuser detectors (MUDs) for MIMO frequency-time-domain (FT-domain) multi-carrier (MC) direct sequence code division multiple access (DS-CDMA) systems with an antenna array at the base station. We assume that multiple users are active and individually utilize multiple transmit antennas in the MC DS-CDMA system. The users are organized into groups, and each user is assigned a unique Time-domain (T-domain) signature code. Moreover, users in the same group share a unique F-domain signature code. As a result, they can exploit the T-domain and F-domain signature codes to spread their multiple symbols in parallel, and then transmit the FT-domain spread signals from the corresponding multiple antennas over the fading channels to the base station. However, because of the non-ideal channel effect and/or the use of non-orthogonal signature codes, the FT-domain spread MC DS-CDMA system is affected by multiple access interference (MAI) in the same way as CDMA-like systems. To mitigate the effects of MAI and improve the system’s performance, we propose two layered MUDs that exploit the layered soft decision errors. Specifically, in a trade-off between the performance and the computational complexity, only the soft decision errors of one user/one group are used in the proposed layered MUDs. The results of simulations and a complexity analysis demonstrate that the proposed layered MUDs outperform existing approaches and the computational complexity is modest.  相似文献   

12.
The structural engineering of 2D layered materials is emerging as a powerful strategy to design catalysts for high-performance hydrogen evolution reaction (HER). However, the ultimate test of this technology under typical operating settings lies in the reduced performance and the shortened lifespan of these catalysts. Here, a novel approach is proposed to design efficient and robust HER catalysts through out-of-plane deformation of 2D heterojunction using metal-organic chemical vapor deposition. High-yield, single-crystalline WTe2 nanobelts are used as an epitaxial template for their coherent conversion to WS2. During the conversion process, the WTe2/WS2 heterostructure containing both lateral and vertical junctions are achieved by coherent heteroepitaxial stacking despite differences in symmetry. The lattice coherency drives out-of-plane deformation of heteroepitaxially grown WS2. The increase in the effective surface area and decrease in the electron-transfer resistance across the 2D heterojunctions in turn enhances the HER performance as well as the long-term durability of these electrocatalysts.  相似文献   

13.
Heterogeneous structures in nacre‐mimetic 2D layered materials generate novel transport phenomena in angstrom range, and thus provide new possibilities for innovative applications for sustainable energy, a clean environment, and human healthcare. In the two orthogonal transport directions, either vertical or horizontal, heterostructures in horizontal direction have never been reported before. Here, a 2D‐material‐based laterally heterogeneous membrane is fabricated via an unconventional dual‐flow filtration method. Negatively and positively charged graphene oxide multilayers are laterally patterned and interconnected in a planar configuration. Upon visible light illumination on the bipolar nanofluidic heterojunction, protons are able to move uphill against their concentration gradient, functioning as a light‐harvesting proton pump. A maximum proton concentration gradient of about 5.4 pH units mm?2 membrane area can be established at a transport rate up to 14.8 mol h?1 m?2. The transport mechanism can be understood as a light‐triggered asymmetric polarization in surface potential and the consequent change in proton capacity in separate parts. The implementation of photonic–ionic conversion with abiotic materials provides a full‐solid‐state solution for bionic vision and artificial photosynthesis. There is plenty of room to expect the laterally heterogeneous membranes for new functions and better performance in the abundant family of liquid processable colloidal 2D materials.  相似文献   

14.
Non-orthogonal multiple access(NOMA) has been widely used in the research of the fifth generation communication,due to the advantages of improving the spectrum efficiency and data rate.In order to guarantee the service of users,a new power allocation strategy was proposed to improve the fairness of users in the cell edge.According to the proportional fairness method,the goal was to maximize the proportionality fairness factor among the users with the least fairness in multiplexed users.The nonconvex objective function was transformed into convex function,and the optimal solution of problem was obtained by KKT optimal constraint condition.Simulation results show that the new NOMA-based power allocation strategy proposed outperforms the traditional orthogonal multiple access technology (OMA).  相似文献   

15.
Well‐defined hollow spherical nanoshell arrays of 2D transitional metal dichalcogenide (TMDC) nanomaterials for MoSe2 and MoS2 are grown via chemical vapor deposition technique for the first time. The hollow sphere arrays display the uniform dimensions of ≈450 nm with the shell thickness of ≈10 nm. The unique hollow sphere architecture with increased active surface area is forecasted to supply more efficient route to improve light‐harvesting efficiency through repeated light reflection and scattering inside the hollow structure without decay of response and recovery speed, because exceptional “SP–SP” junction barriers conducting mechanism can facilitate carriers tunneling and transport during the electron transfer procedure within the present particular structure. The MoSe2 hollow sphere photodetector exhibits an outstanding responsivity (8.9 A W?1), which is tenfold higher than that for MoSe2 compact film (0.9 A W?1), fast response and recovery speed, and good durability under illumination wavelength of 365 nm. Meanwhile, MoSe2 hollow sphere arrays on flexible polyethylene terephthalate substrates reveal excellent bending stability. Therefore, this research indicates that unique hollow sphere architecture of 2D TMDC materials will be an anticipated avenue for efficient photodetector devices with far‐ranging capability.  相似文献   

16.
车联网通信是指在智能传输系统中,车辆与多种网络元素进行信息交换,这些网络元素包括:其他车辆、步行者、网关、交通基础设施。文章在LTE系统级仿真平台上,完成对车联网V2I通信模型的建立,将NOMA技术运用于搭建的仿真模型上。以吞吐量为性能指标,研究NOMA技术的不同用户配对方案和功率分配方案对系统性能的影响。仿真结果证明,基于NOMA技术的车联网通信,整体系统性能优于基于OFDMA技术的车联网通信。  相似文献   

17.
Water oxidation is a critical process for electrochemical water splitting due to its inherent sluggish kinetics. In spite of the high catalytic activities of noble metal-based electrocatalysts for water oxidation, their high cost, rare reserves, and low stabilities drive researchers to exploit efficient but low-cost electrocatalysts. Ultrathin 2D nanomaterials are considered efficient electrocatalysts for oxygen evolution reaction (OER) in water splitting. Herein, a facile strategy is proposed to fabricate 2D FeNi layered double hydroxide (FeNi-LDH) nanosheets packed with the in situ produced 1D sword-like FeNi-MOFs by using FeNi-LDH as a semi-sacrificial template. In the composite, the thickness of the formed nanosheets is only 1.34 nm, much thinner than that of most previously reported 2D materials. The 1D porous sword-like MOF nanorods have a long length of around 1.3 µm. Due to the unique 2D/1D combined structure, the as-prepared FeNi LDH/MOF is directly used as electrocatalyst for the OER displays enhanced OER electrocatalytic performance with a low overpotential of 272 mV@100 mA cm–2, a small Tafel slope of 34.1 mV dec–1, high long-term durability. This work provides a new way to fabricate integrated ultrathin 2D nanosheets and MOFs as advanced catalysts for electrochemical energy conversion.  相似文献   

18.
Telecommunication Systems - The Cooperative Non-orthogonal multiple access (C-NOMA) technique has been considered as a promising solution to improve the coverage extension and transmission...  相似文献   

19.
2D materials, represented by transition metal dichalcogenides (TMDs), have attracted tremendous research interests in photoelectronic and electronic devices. However, for their relatively small bandgap (<2 eV), the application of traditional TMDs into solar‐blind ultraviolet (UV) photodetection is restricted. Here, for the first time, NiPS3 nanosheets are grown via chemical vapor deposition method. The nanosheets thinning to 3.2 nm with the lateral size of dozens of micrometers are acquired. Based on the various nanosheets, a linearity is found between the Raman intensity of specific Ag modes and the thickness, providing a convenient method to determine their layer numbers. Furthermore, a UV photodetector is fabricated using few‐layered 2D NiPS3 nanosheets. It shows an ultrafast rise time shorter than 5 ms with an ultralow dark current less than 10 fA. Notably, this UV photodetector demonstrates a high detectivity of 1.22 × 1012 Jones, outperforming some traditional wide‐bandgap UV detectors. The wavelength‐dependent photoresponsivity measurement allows the direct observation of an admirable cut‐off wavelength at 360 nm, which indicates a superior spectral selectivity. The promising photodetector performance, accompanied with the controllable fabrication and transfer process of nanosheet, lays the foundation of applying 2D semiconductors for ultrafast UV light detection.  相似文献   

20.
In this paper,we investigate the performance of commensal ambient backscatter communications(AmBC)that ride on a non-ortho go nal multiple access(NOMA)downlink transmission,in which a backscatter device(BD)splits part of its received signals from the base station(BS)for energy harvesting,and backscatters the remaining received signals to transmit information to a cellular user.Specifically,under the power consumption constraint at BD and the peak transmit power constraint at BS,we derive the optimal reflection coefficient at BD,the optimal total transmit power at BS,and the optimal power allocation at BS for each transmission block to maximize the ergodic capacity of the ambient backscatter transmission on the premise of preserving the outage performance of the NOMA downlink transmission.Furthermore,we consider a scenario where the BS is restricted by a maximum allowed average transmit power and the reflection coefficient at BD is fixed due to BD’s low-complexity nature.An algorithm is developed to determine the optimal total transmit power and power allocation at BS for this scenario.Also,a low-complexity algorithm is proposed for this scenario to reduce the computational complexity and the signaling overheads.Finally,the performance of the derived solutions are studied and compared via numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号