首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Crack induced surface/subsurface damage in SiC ceramic grinding limits the industrial application. A single-grain scratching simulation based on the smoothed particle hydrodynamics (SPH) has been used to analyze the SiC grinding mechanism, including the material removal process, scratching speed effect on crack propagation, ground surface roughness, and scratching force. The simulation results showed that the material removal process went through the pure ductile mode, brittle assisted ductile mode, and brittle mode with the increase of the depth of cut. The critical depth of cut for ductile-brittle transition was about 0.35?µm based on the change of ground surface crack condition, surface roughness, and maximum scratching force. Increasing the scratching speed promoted the transformation of deep and narrow longitudinal crack in the subsurface into the shallow and wide transverse crack on the surface, which improved the surface quality. The SPH simulation results were indirectly validated by the cylindrical grinding experiments in terms of the critical single grain depth of cut for ductile-brittle transition, and the trend of ground surface roughness and grinding forces.  相似文献   

2.
《Ceramics International》2017,43(15):11596-11609
A critical function for crack propagation for the single grit scratching of fused silica is developed based on the fracture mechanics. The effects of original crack density on the surface, strain rate and grinding coolant are considered in the function. A theoretical model for controlled material removal mode and depth of micro cracks precision grinding is presented based on the critical function for crack propagation. It can be predicted by the model that the material removal mode in the grinding of fused silica with original cracks damage will change from a ductile mode to a semi-brittle mode, a full-brittle mode and a semi-brittle mode in sequence with the increasing single grit scratching depth. It was found that the micro crack damage depth of fused silica does not increase with the single grit scratching depth after a full brittle mode grinding and it is always smaller than that after a semi brittle mode grinding even with a smaller single grit scratching depth. These interesting results are explained by the fracture mechanics. The ductile mode grinding is a recognized desirable process of fabricating fused silica while the full-brittle grinding is also a feasible process for its shallow subsurface damage, high efficiency, low grinding force and energy consumption. Therefore, the depth of micro cracks after grinding can be controlled by choosing suitable grinding parameters. Grinding experiments are conducted on fused silica. The undeformed chip thickness of randomly distributed effective grits is simulated based on 3D reconstruction of wheel topography to reveal the relationship between the grinding parameters and the single grit scratching depth. Ground surface roughness, sub-surface damage (SSD) depth and grinding force are measured and discussed. It is shown that the model predictions correlate well with the experimental trend of grinding modes.  相似文献   

3.
《Ceramics International》2023,49(4):5951-5963
The mechanisms of ductile–brittle transition and surface/subsurface crack damage during the grinding of plasma–sprayed alumina ceramic coatings were investigated in an experiment and simulation on single diamond abrasive grain cutting. We observed that the brittle damage modes of alumina ceramic include boundary cracks, median cracks and lateral fractures. The normal force of the abrasive grain results in the initiation of median cracks, whereas the tangential force of the abrasive grain results in the propagation of median cracks in the direction of the abrasive grain cutting. Some cracks propagate downward to form machined surface cracks, whereas others propagate to the unmachined surface of the workpiece to produce brittle removal. Owing to the alternating tensile and compressive stresses, the material in contact with the top of the abrasive grain fractures continuously, forming the main morphology of the machined surface. The geometry and cutting depth of the abrasive grain have a significant influence on the ductile–brittle transition, whereas the cutting speed of the abrasive grain have no significant influence. On one hand, the stress concentration at the pore defects result in crack propagation to the deep layer; on the other hand, it reduces the local strength of the surface material, produces brittle fracturing, and interrupts crack propagation. The pores exposed on the machined surface and the broken morphology around them are important factors for reducing the surface roughness. Experimental observations show that the machined surface morphology of the alumina ceramic coating is composed of brittle fracturing, ductile cutting and plowing, cracks, original pores, and unmelted particles.  相似文献   

4.
《Ceramics International》2017,43(14):10726-10736
An analytical model for the elastic stress field in isotropic hard and brittle materials during scratching is presented. The model considers the entire elastic stress field and the effect of material densification that was ignored in past studies, and is developed under a cylindrical coordinate system to make the modeling process simpler. Based on the model's predictions, the location and sequence of crack nucleation are estimated and the associated mechanisms are discussed. A single grit scratching experiment with an increasing scratch depth up to 2 µm is conducted for two types of optical glasses representing isotropic brittle materials: fused silica and BK7 glasses. It is found that the model's predictions correlate well with experimental data. Median cracks are found to be formed first during scratching, and the corresponding depth of the scratch sets the basis for determining the critical depth for brittle to ductile machining. Lateral cracks are initiated in the plastic yielding region and deflect to the work surface to cause material removal, while Hertzian cracks interact with lateral cracks to help remove lateral-cracked material. Furthermore, it is found that, owing to its open network molecular structure, fused silica has a much worse ductile machinability than the BK7 glass.  相似文献   

5.
A series of static and sliding indentation (ie, scratching) was performed and characterized on a wide range of optical workpiece materials [single crystals of Al2O3 (sapphire), SiC, Y3Al5O12 (YAG), CaF2, and LiB3O5 (LBO); a SiO2–Al2O3–P2O5–Li2O glass ceramic (Zerodur); and glasses of SiO2:TiO2 (ULE), SiO2 (fused silica), and P2O5–Al2O3–K2O–BaO (Phosphate)] at various applied loads using various indenters (Vickers, 10 µm conical, and 200 µm conical). Despite having different load dependencies, the lateral crack depth formed during sliding indentation quantitatively scales with that formed during static indentation, explaining why static indentation has been historically effective in describing various grinding parameters. Depending on the indenter geometry, the amount of residual trench damage (plastic deformation and local fracturing) during sliding indentation was often enhanced by more than an order of magnitude compared with static indentation. A simple ploughing scratch model, which considers both tangential and normal stresses (where the tangential stress is amplified by relatively small tangential contact area), explains this enhancement and other observed trends. Accounting for the high correlation between residual trench depth and volumetric fracturing, the model is extended to estimate the amount of fracture damage as a function of the material properties of the workpiece, indenter geometry, and applied load. Such a model has utility in the design of optimized grinding processes, particularly the abrasive geometry. Finally, at higher loads (>1 N), lateral cracks were often observed to preferentially propagate in the forward scratching direction, as opposed to perpendicular to the scratch as typically observed. High-speed imaging of the scratch process confirms that these cracks propagate ahead of the sliding indenter during the scratching event. Finite element stress analysis suggests the ploughing frictional forces increase the mode I tensile stresses at the leading edge of the sliding indenter explaining the direction of crack propagation of such cracks.  相似文献   

6.
《Ceramics International》2023,49(1):817-833
Rotary ultrasonic machining (RUM) is an effective method of high-quality and high-efficiency machining for advanced composites. However, the machining mechanism and kinematic characteristics of ultrasonic machining of SiC particles-reinforced aluminum matrix (SiCp/Al) composites are yet unclear, limiting the applications of RUM in composites machining. In this study, a rotary ultrasonic vibration-assisted scratch (RUVAS) test was designed for the high-volume fraction of SiCp/Al composites. The kinematic and scratch force model of RUVAS was developed to describe the scratch process of SiCp/Al. Both RUVAS and conventional scratch (CS) tests were performed under various scratch speeds on SiCp/Al. The scratch trajectory was divided into three modes: continuous, semi-continuous, and intermittent. We observed the formation of different surface morphology under different modes. The scratch force difference between RUVAS and CS was insignificant when the scratch speed is high, which indicated that the effect of ultrasonic vibration diminished at a high speed when the ultrasonic frequency was fixed. When assisted by ultrasonic vibration, the scratch morphology of SiCp/Al indicated that the matrix has undergone significant plastic deformation. While the hard SiC particles tended to be ruptured and pressed into the plastic matrix, this mechanism can effectively suppress the initiation and propagation of cracks, which is beneficial to reducing the stress influence zone, healing the surface defects, and improving the surface integrity. The subsurface morphology indicates that the subsurface damage under CS and RUVAS mainly includes particle cracking, matrix tearing, and interface failure. Our experimental result shows that ultrasonic vibration can effectively reduce the subsurface damage of SiCp/Al composites, bringing insight into fundamental mechanisms of ultrasonic machining and providing guidance for the vibration-assisted processing of SiCp/Al composites.  相似文献   

7.
《Ceramics International》2022,48(21):31500-31508
Nondestructive machining of optical components and smoothing of surface/subsurface damage generated by pre-processing is a major challenge for ultra-tight machining. The study analyzes the crack change during smoothing by quantitative layer-by-layer removal of Vickers indentations through atmosphere pressure plasma jet; the indentation change process is modeled and analyzed using Level Set Method (LSM) simulation. The results show that plasma jet processing can smooth the subsurface damage of fused silica optical components, and the LSM simulation verifies that the processing of cracks in fused silica components by plasma jet is dominated by each isotropic etching, and there are also each anisotropic etching during the change of cracks; and the depth of adjacent cracks can be judged by the moving direction of adjacent crack boundaries.  相似文献   

8.
To explore the anisotropic deformation behavior of aluminum nitride ceramic during processing, ramp and constant load scratch experiments were conducted with Vickers indenter. Characteristics of deformation anisotropy were observed in ramp-load scratch with differences found in the directions of pile-ups, slip lines and cracks produced by grains with various orientations. Constant-load scratches were conducted to explore the anisotropic deformation behavior in plastic stage. Obvious differences were found in scratch pile-up height and residual depth of grains with different orientations. As the grain orientation Euler angle changes from the basal to the two prism surfaces, the residual depth of the scratch gradually increases. Molecular dynamics simulation was performed to disclose the mechanisms of anisotropic dislocation and deformation during scratching. The activation of the slip system for different grain orientations was calculated by a scratch Schmid factor model which was verified by the observation of pile-ups and slip lines around the scratches.  相似文献   

9.
《Ceramics International》2017,43(3):2981-2993
In this paper, a varied-depth nano-scratch test of single grain is carried out on a nano indentation system. The critical depth of the elastic-plastic transition for SiC ceramics is 7.27 nm, as calculated by Hertz contact theory, and the critical depth of the brittle-to-ductile transition is 76.304 nm, as measured by AFM and SEM. Based on the varied-depth nano scratch test and the grain trajectory of ultrasonic vibration assisted grinding (UVAG), a theoretical model of the normal grinding force is acquired using the material removal in unit time as a bridge. The single factor experiment illustrates that the grinding force increases with the increase of the grinding depth, feed rate, and amplitude, while it decreases with the increase of the spindle speed. The contrast experiment results show that UVAG is beneficial for improving the surface quality and reducing the subsurface damage depth compared with common grinding (CG). A four-level and four-factor orthogonal experiment is designed, on the basis of which theoretical model of the normal grinding force for SiC ceramics is obtained using genetic algorithm. The tangential grinding force is obtained from the normal grinding force using the least square method. The experimental results show that the theoretical model is reliable.  相似文献   

10.
Subsurface damage (SSD) is the fracture and deformation near the surface of brittle optical materials, caused by surface lapping or grinding. The existence of SSD dramatically influences the performance of optical glass and reduces the laser-induced damage threshold. Subsurface cracks of borosilicate glass can be spontaneously healed when heated under appropriate conditions. In this paper, thermal healing experiments of borosilicate glass (BK7) subsurface cracks are conducted on typical cracks induced by an indentation process, and the effects of the Beilby layer, temperature, crack depth, and water vapor pressure are studied. A semi-empirical relation is obtained through the regression of experimental results to describe the variation of subsurface crack length. Finally, a healing experiment is performed on the subsurface damage formed by grinding. The detection results show both the damage density and maximum damage depth have been reduced after heat treatment, demonstrating the effectiveness of the thermal healing method on eliminating glass subsurface damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号