首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用真空热压烧结工艺制备了纤维长度为3mm、质量分数为3%的短碳纤维增强2024铝基复合材料。研究了热压工艺对复合材料密度、晶粒尺寸、界面结构和硬度的影响。结果表明,在450℃、50MPa下保温50min时,复合材料致密程度较高,纤维与α(Al)基体的界面结合良好,硬度达到最高。由于镀铜层提高了纤维与α(Al)基体的润湿性,镀铜短碳纤维比没有镀铜的短碳纤维对复合材料的性能提高更显著。  相似文献   

2.
界面优化是提高铝基复合材料最为有效的手段。通过化学镀工艺成功制备0.2 μm厚Ni-Co-P合金镀层修饰的玄武岩纤维,并通过真空热压烧结工艺合成Ni-Co-P镀层修饰玄武岩纤维增强2024Al复合材料(BF(Ni-Co-P)/Al)。探究了Ni-Co-P镀层对BF(Ni-Co-P)/Al复合材料界面结构及拉伸性能的影响机制。结果表明:复合材料中Ni-Co-P镀层形成稳定的Ni-Co-P中间层,不仅抑制了玄武岩纤维与铝合金基体间的有害界面反应,且优化了二者间的结合强度。BF(Ni-Co-P)/Al复合材料密度及硬度明显优于BF/Al复合材料,且当玄武岩纤维体积分数为30vol%时,BF(Ni-Co-P)/Al复合材料屈服强度和抗拉伸强度分别为252和360 MPa,大幅高于未修饰纤维增强铝基复合材料和铝合金基体,并表现出渐进累积失效的断裂模式。  相似文献   

3.
为了改善碳纤维与Al基体的润湿性和抑制Al基体对碳纤维的反应腐蚀,采用电镀工艺结合超声辅助振荡分散法,在碳纤维表面制备了均匀、光滑、连续的Cu界面层。通过真空压力浸渗法制备了碳纤维增强铝基复合材料。微观组织结构分析表明,Cu界面层的引入,使得所制备的复合材料中碳纤维分散好、基体致密度高、Al熔体能很好地浸渗到碳纤维束丝中形成结合良好的碳纤维-基体界面;同时,Cu界面层的引入可以避免Al熔体对碳纤维的腐蚀。力学性能测试表明,与工业纯Al相比,当碳纤维的体积分数为8%时,材料的拉伸强度可以提高143%。断口分析表明,在拉应力作用下,碳纤维-基体复合区域的碳纤维在Al基体中发生了滑移或拔出,因此在碳纤维的滑移和拔出过程中裂纹扩展被抑制,从而大大提高铝基复合材料的强度。  相似文献   

4.
碳纤维增强铝基复合材料(Cf/Al)具有很多优良特性,作为结构材料和功能材料在航空航天等领域有着广泛的应用前景。本试验采用挤压铸造法制备了连续碳纤维增强铝基复合材料,分析了复合材料的微观形貌、界面特征及力学性能。基体材料为Al-Cu合金,增强纤维为T-300连续碳纤维。通过合理的控制工艺参数,挤压铸造后铝合金均匀、致密地填充在增强纤维之间,纤维和基体的结合界面良好,纤维表面镀镍及未镀镍的Cf/Al复合材料界面均未发现Al4C3脆性相。纤维体积分数为50%的铝基复合材料抗拉强度和弹性模量分别为512 N/mm2和163 GPa,显著高于金属基体的。  相似文献   

5.
采用真空热压法制备了体积分数为30%的Si Cp/2024Al复合材料,研究了该复合材料的显微组织结构及力学性能。结果表明,复合材料组织致密,颗粒与基体界面结合状况较好,Si C颗粒在铝基体中基本上分布均匀。经490℃、2 h固溶处理和170℃、8 h人工时效后,Si Cp/2024Al复合材料的抗拉强度、屈服强度和伸长率分别为409 MPa、325 MPa和4.9%,基体中存在大量的纳米析出相为S'(Al2Cu Mg)。随Si C颗粒加入,复合材料力学性能提高,其断裂方式为基体开裂和界面处撕裂。  相似文献   

6.
选用浅交弯联、浅交直联、层联结构的M40碳纤维机织物为增强体材料,采用真空气压浸渗法制备纤维体积分数为48%,基体合金为ZL301的2.5D编织M40碳纤维增强铝基复合材料(2.5D-Cf/Al),研究织物结构对2.5D-Cf/Al复合材料微观组织与力学性能的影响。结果表明:复合材料的致密度随着织物结构的改变而变化,其中浅交直联结构的2.5D-Cf/Al复合材料的致密度最大为98.5%;织物结构对复合材料的经向拉伸强度有较大影响,浅交直联结构的2.5D-Cf/Al复合材料经向拉伸强度最高,为414.85 MPa,其拉伸断口参差不齐,呈现出适中的界面结合强度;织物结构对复合材料纬向拉伸强度的影响较小,拉伸断口形貌差异不明显。  相似文献   

7.
为了改善碳纤维与铝基体之间界面的润湿性和结合性能,采用挤压熔体浸渗法制备镍和铜涂覆碳纤维增强铝基复合材料,对两种不同涂层碳纤维增强铝基复合材料的界面润湿性、显微组织和力学性能进行比较和研究.显微组织结构分析表明,与无涂层碳纤维增强铝基复合材料相比,在相同的浸渗工艺条件下,在碳纤维表面涂覆两种金属均可以显著改善碳纤维与铝...  相似文献   

8.
选用M40J碳纤维、KD-Ⅱ型碳化硅纤维和Nextel610型氧化铝纤维为增强体材料,采用真空压力浸渗法制备纤维单向排布,基体合金为ZL301的连续纤维增强铝基复合材料,研究增强纤维对复合材料致密度、界面及力学性能的影响。结果表明:增强纤维对复合材料的致密度有着明显影响,C_f/Al复合材料的致密度最大,达到99.9%,密度最小,仅为2.248g/cm~3,且其纤维排布均匀,组织缺陷最少;不同增强纤维与基体会发生不同程度的界面反应,最后表现为不同的纤维损伤程度,界面层厚度和界面相的大小,Al_2O_3f/Al复合材料未发现明显界面层,SiC_f/Al复合材料和C_f/Al复合材料的界面层厚度分别为275.3 nm和327.4 nm,界面上都发现有短棒状的Al_4C_3相;SiC_f/Al,C_f/Al和Al_2O_3f/Al复合材料的拉伸强度分别为780.3 MPa,670.2 MPa和587 MPa,组织缺陷、纤维损伤和界面结合强度是影响复合材料强度的主要因素。  相似文献   

9.
本文利用电镀工艺制备了表面镀镍碳纤维,通过双辊铸轧短流程成型工艺成功制备了连续碳纤维增强铝基(Cf/Al)复合材料板,研究了浇注温度对铸轧复合材料板的微观组织、界面特征、断口形貌和力学性能的影响。结果表明,浇注温度为963~983K,轧制速度为2.7m/min,辊缝为2.0mm的条件下可制备出表面平整、无明显表面缺陷的Cf/Al铸轧复合材料板;其中,浇注温度为973K时,碳纤维与铝基体之间界面结合良好;纤维表面金属镍层明显改善了碳纤维与铝基体之间的浸润性,镍镀层还有效抑制了Al4C3脆性相的产生,使Cf/Al复合材料板力学性能大幅提升,其中浇注温度973K铸轧的Cf/Al复合材料板抗拉强度比初始的38.2MPa提高了87.4%。  相似文献   

10.
采用热等静压的方法制备了不同比例SiC颗粒增强相增强铝基复合材料,研究了SiC质量分数在15wt%~20wt%条件下,增强相含量对SiC_P/2024复合材料微观组织、拉伸性能及硬度的影响。结果表明:SiC颗粒在铝基体中呈骨架连续分布,经固溶热处理和自然时效后,晶粒尺寸增大,整体均匀化,界面结合状态良好,SiC_P/2024复合材料的拉伸强度有明显的提高;当SiC质量分数在15wt%~20wt%时,随着增强相含量的增加,SiC_P/2024复合材料抗拉强度和硬度变化不大,但会提高材料的屈服强度。相比未添加SiC颗粒的铝基体,SiC颗粒作为硬质相加入到铝基体后,在界面结合状态良好的状态下,对材料的力学性能具有良好的改善作用。  相似文献   

11.
采用金相显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)和能谱(EDS)分析玄武岩颗粒增强7A04铝基复合材料的显微组织和界面结构,对比研究7A04铝合金和BP/7A04铝基复合材料的力学性能。研究结果表明:玄武岩颗粒在铝基体中弥散分布,并与铝基体形成强力结合界面,玄武岩颗粒边缘的Si O2不断被反应生成的Al2O3取代,形成一层几十纳米厚度的高温反应层,反应生成的Al2O3强化了玄武岩颗粒与铝基体的结合界面;弥散分布的玄武岩颗粒可促进基体中位错增殖、空位形成和析出相的析出,析出相主要以板状的η(Mg Zn2)相和亮白色条状或椭球状的T (Al2Mg3Zn3)相为主,结合界面、高位错密度及弥散分布的强化相显著提高复合材料的力学性能,BP/7A04铝基复合材料的屈服强度和极限拉伸强度分别达到665和699MPa,与未添加玄武岩颗粒的7A04铝合金相比分别提高11.4%和10.9%。  相似文献   

12.
采用高能球磨、放电等离子烧结以及热挤压工艺制备含量为5.0%(体积分数)的石墨烯增强铝基复合材料.分别采用X射线光电子能谱、透射电镜及拉伸试验研究挤压态复合材料的显微组织与力学性能,发现5.0%(体积分数)的石墨烯分散在铝晶界上,并且未与铝基体发生界面反应.最终,挤压态复合材料的屈服强度和抗拉强度高达462 MPa和4...  相似文献   

13.
采用粉末冶金加热挤压工艺制备SiC_p/AZ61复合材料,为了改善复合材料的界面结合性能,在SiC_p表面化学镀覆镍-磷涂层。分析镍涂层对复合材料显微组织和力学性能的影响。结果表明,SiC颗粒表面镀镍后在复合材料中分布更均匀,镀镍复合材料缺陷较少。在烧结过程中镍涂层与镁基体反应形成Mg_2Ni界面化合层。与未镀覆复合材料相比,镀镍复合材料的致密度从97.9%增加到98.4%,并且随着SiC颗粒体积分数的增加,镀镍复合材料的硬度增加得更快。拉伸实验结果表明,当SiC颗粒的体积分数为9%时,镀镍复合材料具有较高的伸长率,拉伸强度从320MPa增加到336MPa,表明镍涂层能提高界面结合强度和性能。此外,分析SiC_p/AZ61复合材料的断口形貌。  相似文献   

14.
对旋涡搅拌铸造法制备的SiCp/Al复合材料的界面和力学性能进行了分析研究。结果表明 ,SiCp/Al的界面结合为性能良好的冶金结合。SiC颗粒能提高铝基体的拉伸强度 ,同时显著提高铝基体的室温硬度与高温硬度  相似文献   

15.
采用机械合金化与放电等离子烧结工艺制备了体积分数为5%的Al35Ti15Cr20Mn20Cu10增强6061Al复合材料,重点研究了烧结温度对轻质高熵合金增强铝基复合材料微观组织及力学性能的影响。当烧结温度为540℃时,复合材料的致密度最大为98.6%。此时复合材料基体与增强体之间产生明显过渡层,界面结合以扩散结合为主。随着烧结温度升高,复合材料的屈服强度出现先上升后下降的趋势。当烧结温度为540℃时,复合材料的屈服强度达到186MPa,相比基体的屈服强度提升了约75%,复合材料的屈服强度接近Iso-strain模型的计算值。  相似文献   

16.
利用搅拌铸造技术制备SiCp/A356铝基复合材料.通过金相观察(OM),扫描电镜(SEM)及力学性能测试对所制备的颗粒增强铝基复合材料的显微组织和力学性能进行了研究.结果表明,SiC增强颗粒较均匀地分布于基体中,SiC/Al界面处存在明显的Si溶质偏聚,复合材料的孔隙率为4.2%;与基体合金相比,SiC颗粒的加入提高了复合材料的硬度和屈服强度,抗拉强度及延伸率略有下降;断口分析表明,搅拌铸造SiCp/A356铝基复合材料主要的断裂机制为SiC/Al界面脱粘及基体合金的脆性断裂.  相似文献   

17.
采用浸镀的方法在纯铝基体上浸镀镍基镀层,然后在450~550℃温度范围内用扩散复合的方法制备Al/Cu双金属材料。用扫描电子显微镜(SEM)和X射线衍射仪(XRD)分别对Al/Cu结合体的界面显微组织以及断裂表面进行表征。用拉伸剪切测试及显微硬度测试对Al/Cu双金属材料的力学性能进行测量。结果表明,Ni中间层可以有效地消除Al—Cu金属间化合物的形成。Al/Ni界面由Al_3Ni和Al_3Ni_2两相组成,而在Ni/Cu界面处则是Ni—Cu固溶体。Ni中间层的加入提高了复层材料的拉伸剪切强度。在500℃制备的添加Ni中间层的试样表现出最大的拉伸剪切值,为34.7 MPa。  相似文献   

18.
采用乙醇溶液分散和球磨两步法将石墨烯和铝粉混合,然后采用冷压和真空热压烧结相结合工艺制备了石墨烯/Al复合材料。利用扫描电镜、X射线衍射、电子万能实验机和显微维氏硬度计等分析了复合粉体混合前后形貌,研究了石墨烯添加量对复合材料微观结构和力学性能的影响。结果表明:采用乙醇溶液分散和球磨两步法,石墨烯均匀分散在铝颗粒基体中,得到混合均匀的复合粉体。冷压-真空热压烧结制备的复合材料组织致密,界面结合良好,石墨烯呈片状均匀地分布在铝基体中。随着石墨烯含量的增加(0.5%~2%,体积分数),复合材料强度和硬度均逐渐升高;当石墨烯的含量为1%时,复合材料的综合力学性能较好,强度和硬度分别达到199 MPa和82.95 HV,相对纯铝基体的分别增加了99%和113%。  相似文献   

19.
本文采用放电等离子烧结→热轧制方法制备了颗粒含量为1~7%的钨颗粒增强铝基复合材料,研究钨颗粒含量对复合材料的微观组织、机械性能和导电性能的影响。研究结果表明:钨颗粒均匀的分布在基体铝合金当中,W/Al界面之间达到了冶金结合,在界面处存在元素扩散和WAl12金属间化合物的生成。在复合材料中,随着钨颗粒含量的增加,复合材料的致密度和韧性降低而拉伸强度呈现先升高后降低的趋势。其中,1和3 vol.% W/Al复合材料的拉伸强度和断裂韧性分别为192.85 MPa (16.84%) 和315.18 MPa (11.93%)。此外,W/Al复合材料具有良好的电导率,W颗粒的含量对复合材料的影响较小。  相似文献   

20.
杨锐  王筱峻  陈名海  刘宁  李清文 《铸造》2014,(2):156-161
采用搅拌铸造技术制备Ti元素改性SiC p/2024铝基复合材料,并对铸态材料进行二次加工,研究Ti改性、热挤压以及颗粒含量对复合材料力学性能的影响,通过X射线衍射(XRD)和扫描电子显微镜(SEM)等测试分析手段对物相结构进行表征。结果表明,增加Ti元素含量可以提高2024基体及其复合材料力学性能;热挤压有利于改善SiC颗粒与基体的界面结合,使材料性能较铸态显著提高,并且在细化材料组织的同时还能使Ti元素的作用得到进一步加强;复合材料的综合力学性能在颗粒含量3%时达到最佳,其中热挤态拉伸强度和硬度分别可达311 MPa和HB133,较铸态2024基体分别提高了94.4%和84.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号