共查询到20条相似文献,搜索用时 15 毫秒
1.
Elodie Drouelle Veronique Brunet Jonathan Cormier Patrick Villechaise Pierre Sallot Foad Naimi Frederic Bernard Sylvain Dubois 《Journal of the American Ceramic Society》2020,103(2):1270-1280
Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phase powders are densified using Spark Plasma Sintering (SPS) technique to obtain dense bulk materials. Oxidation tests are then performed over the temperature range 800°C-1000°C under synthetic air on the two different materials in order to compare their oxidation resistance. It is demonstrated that, in the case of the Ti3Al0.8Sn0.2C2 solid solution, the oxide layers consist in TiO2, Al2O3, and SnO2. The presence of Sn atoms in the A planes of the solid solution leads to an easy diffusion of Sn out of the MAX phase which promote the formation of the nonprotective and fast growing SnO2 oxide. Moreover, the small Al/Ti atom's ratio promotes the growth of a nonprotective rutile-TiO2 scale as well. In the case of the Ti3AlC2 MAX phase, the oxide layer consists in a protective alumina scale; a few TiO2 grains being observed on the top of the Al2O3 layer. The parabolic oxidation rate constants are about 3 orders of magnitude smaller for Ti3AlC2 compared to Ti3Al0.8Sn0.2C2. 相似文献
2.
《Ceramics International》2021,47(18):25520-25530
(Ti0·8Mo0.2)3AlC2 solid solutions were successfully synthesized from Ti, Al, TiC, and Mo powders using the in situ hot-pressing sintering method. The tribological properties of (Ti0·8Mo0.2)3AlC2 and the reference Ti3AlC2 in the temperature range 25–800 °C were evaluated in ambient air with the counterpart of Al2O3 balls. The results show that (Ti0·8Mo0.2)3AlC2 has improved lubricating properties and wear resistance above 400 °C compared with Ti3AlC2. This can be contributed to the formation of tribo-oxidation films containing MoO3 and MoO3-x. Structural characterization of the tribo-oxidation films was conducted using SEM, EDS, Raman spectroscopy, and XPS to evaluate the effect of Mo doping on the wear mechanisms of Ti3AlC2 in detail. 相似文献
3.
《Ceramics International》2017,43(7):5708-5714
Corrosion behavior of self-sintered, ternary-layered titanium silicon carbide (Ti3SiC2) and titanium aluminum carbide (Ti3AlC2) fabricated by an in-situ solid-liquid reaction/hot pressing process was investigated by potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. Commercially pure titanium (Ti) was selected for comparison through XRD, XPS, SEM and EDS examinations for elucidating both the passivation behavior and corrosion mechanism of the alloys. Both Ti3SiC2 and Ti3AlC2 exhibited significantly superior passivation characteristics compared to Ti; Ti3SiC2 also showed better corrosion resistance. The silicon/aluminum site is prone to attack, and the difference in the diffusion rate between the A-site atoms and titanium decreases the passivation ability of the MAX phase. CP titanium exhibited a lower passivation current density and did not undergo breakdown in the test potential region while two MAX phases are destroyed. Nevertheless, the corrosion resistances of Ti3SiC2 and Ti3AlC2 are comparable to that of CP titanium. 相似文献
4.
《Journal of the European Ceramic Society》2020,40(1):197-201
In an effort to overcome the property degradation of Ti2AlC MAX phase coating used in harsh environments, we fabricated a solid solution Ti2(Al0.6Sn0.4)C coating with amount of Ti5Sn3 (20 wt.%) by a combined technique composing of magnetron sputtering and post-heat treatment. The cracks induced by Vickers indentation on coating surface were self-healed at 700 ℃, which is the lowest self-healing temperature among the Al-based MAX phase coatings till now. The structural evolution and kinetic diffusion revealed that the formation of SnO2 is the key factor to achieve the crack self-healing at such a low temperature for Al-based MAX phase coatings. Additionally, the self-healed Ti2(Al0.6Sn0.4)C coating exhibited better oxidation resistance compared to the unhealed one at 800 ℃. The results provide a novel and facile strategy to develop the protective MAX phase coatings with high performance at high temperature by partially substituting Al with Sn. 相似文献
5.
《Ceramics International》2020,46(10):16298-16309
The mass production of MAX phase coatings such as Ti3SiC2 and Ti3AlC2 using the plasma spraying method is highly challenging due to its ultra-high temperature and short reaction time. In this study, agglomerate powders of 3Ti/SiC/C/xAl with various Al contents (x = 0–1.5) were prepared to form TiC/Ti5Si3/Ti3SiC2 composite coatings using the plasma spraying technique. The effect of the Al addition on the microstructures and mechanical performances of the as-sprayed coatings was investigated. The addition of Al decreased the TiC content of the coatings while increasing their Ti3SiC2 content significantly. The addition of even small amounts of Al improved the MAX phase fraction of the coatings from 8.95 wt% (x = 0) to 34.05 wt% (x = 0.2) and 41.60 wt% (x = 0.5). Excess Al did not affect the Ti3SiC2 content of the coatings. The composite coatings showed a lamellar structure with pores and microcracks. With the addition of Al, the microhardness of the coatings increased slightly, while the fracture toughness improved significantly. The composite coatings with Al showed better wear resistance than those without Al. The wear mechanism of the coatings was a combination of adhesive wear, abrasive wear, and oxidative wear. 相似文献
6.
Jesus Gonzalez-Julian Irina Kraleva Manuel Belmonte Fabian Jung Thomas Gries Raul Bermejo 《Journal of the American Ceramic Society》2022,105(1):120-130
The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three-stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single-layer fabric. The laminates are processed by layer-by-layer stacking, where 3 two-dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field-Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX-phase layered structures for multifunctional performance. 相似文献
7.
Shuai Wang Jun Cheng Shengyu Zhu Zhuhui Qiao Jun Yang Weimin Liu 《Journal of the European Ceramic Society》2018,38(6):2502-2510
In this paper, in situ formed Ti3(Al,Sn)C2/Al2O3 composites were fabricated by sintering the mixture of Ti3AlC2 and SnO2. The Al atoms could diffuse out of the Ti3AlC2 layered structure to react with SnO2, resulting in the formation of Ti3(Al,Sn)C2 solid solution and Al2O3. When the SnO2 content was 20?wt.%, the sintered Ti3(Al,Sn)C2/Al2O3 composite exhibited the best overall mechanical properties, because of the optimized cooperative strengthening effect of solution strengthening and Al2O3 enhancement. When the SnO2 content increased up to 30?wt.%, the flexural strength and fracture toughness of Ti3(Al,Sn)C2/Al2O3 composite dramatically decreased on account of the large accumulation of generated Al2O3. Moreover, according to the SiC ball-on-flat wear tests, it was found that the wear resistance of Ti3(Al,Sn)C2/Al2O3 composites was significantly improved as the SnO2 content increased. 相似文献
8.
9.
Weihua Chen Jiancheng Tang Xingwang Shi Nan Ye Zhihao Yue Xinghao Lin 《International Journal of Applied Ceramic Technology》2020,17(2):778-789
High-purity titanium aluminum carbide (Ti3AlC2) powders were synthesized by a microwave sintering method using different titanium sources as raw materials. The prepared products were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated that the synthesized Ti3AlC2 powders have high purity (97.5%) and even distribution of the grain size when using a 3TiH2/1.2Al/2C mixture as raw materials when the microwave sintering temperature and time were 1300°C and 30 minutes, respectively. The formation mechanism of the Ti3AlC2 is described as proceeding via four stages. The solid-phase reaction between titanium and aluminum occurs below the melting point of aluminum and the main product is a Ti3Al phase, which is an observed intermediate compound for the formation of Ti2AlC and Ti3AlC2. Thus, this study provides a beneficial approach to low-temperature synthesis of high-purity Ti3AlC2 materials. 相似文献
10.
《Ceramics International》2022,48(2):1745-1756
In this study, Ti3AlC2 particles doped aluminum matrix composites were prepared by ultrasonic agitation casting method. Microstructure, mechanical properties, and tribological properties of pure aluminum and Ti3AlC2p/Al composites were characterized. Influence of different loads (10, 20, 30, and 40 N) and Ti3AlC2 contents (1.0, 2.0, 3.0, and 4.0 wt%) on the tribological behaviors of the composites were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Energy dispersion spectroscopy (EDS), and 3D laser confocal were used to assist the analysis. The results indicated that fine and uniformly microstructure and the optimum comprehensive mechanical properties were exhibited on 2.0 wt%-Ti3AlC2p/Al composites. The abrasive grooves were widened and deepened with an increase in the load. The abrasion performance of composites improved distinctly with the addition of the Ti3AlC2 particles, which changed the wear mechanism from adhesive wear to abrasive wear. The 30 N load and the composites of 2.0 wt% Ti3AlC2 revealed the optimum tribological properties. The improvement of the tribological behavior of composites was attributed to the refinement of microstructure, the improvement mechanical properties and the three dimensional layered Ti3AlC2 phases with self-lubricating properties. 相似文献
11.
Tailoring Magnetic Properties of MAX Phases,a Theoretical Investigation of (Cr2Ti)AlC2 and Cr2AlC 下载免费PDF全文
Jiemin Wang Zhimou Liu Haibin Zhang Jingyang Wang 《Journal of the American Ceramic Society》2016,99(10):3371-3375
(Cr2Ti)AlC2 is a newly discovered MAX phase with ordered occupations of Ti and Cr atoms on M sites. The Cr‐containing MAX phase is expected showing magnetic property, which provides functional applications in spintronics and as self‐monitoring smart coating. The magnetic states of (Cr2Ti)AlC2 are predicted by GGA and GGA + U methods and compared to those of Cr2AlC. The ground states are predicted as FM or AFM‐XX configurations depending on the calculation methods. Analysis of the electronic structure shows that the magnetic moments mainly originate from the net spins of Cr 3d valence electrons, whereas the contribution of other atoms is negligible. The calculated magnetic moments of Cr atoms in (Cr2Ti)AlC2 are higher than those in Cr2AlC due to the larger distance between the out‐plane Cr atoms separated by the intercalated nonmagnetic Ti–C slab. This work provides an insight on tailoring magnetic properties of MAX phases by modifying the crystal structure. 相似文献
12.
《Ceramics International》2023,49(1):168-178
Since the synthesis of non-oxidized ceramic and alloy powders requires both high temperature and oxygen insulation conditions, here we demonstrate a cost-efficient molten salt sealing/shielded synthesis method with dynamic gas tightness. Compared to conventional synthesis method, it can prevent the loss of reaction materials at high temperature, cut off the connection between reacting material and outside air, and does not require long-time ball milling mixing treatment or provision of applied pressing before or during heating. Only low-cost salts (e.g., NaCl, KCl), a few minutes of raw material mixing, and regular heating molds are required to obtain high-purity (>96 wt%), micron-sized Ti3AlC2 and Ti3SiC2 powders with narrow size distribution, which significantly decreased the complexity and production costs in the synthesis process. The effect of temperature and raw material content on the products were investigated. The mechanism of diffusion reaction between reactants in molten salt environment was analyzed. The new method developed here was also applicable to Ti2AlC, V2AlC and Cr2AlC MAX phases, as well as provided new ideas for the preparation of other MXenes precursors with certain stoichiometric ratios, air-sensitive materials and nanopowders. 相似文献
13.
Yi Zhong Ying Liu Na Jin Zifeng Lin Jinwen Ye 《Journal of the American Ceramic Society》2023,106(9):5567-5579
Fine, pure Ti3AlC2 powder is prepared in a very mild condition via Ti3Al alloy and carbon black with the assistance of molten salts. X-ray diffraction, scanning electron microscopy, TG-DSC, and transmission electron microscopy (TEM) characterizations show that the high purity, nanosized Ti3AlC2 can be obtained at 900°C with the 1:1 salt-to-material ratio. The formation mechanism of Ti3AlC2 through this strategy of alloy raw material is fully studied under further TEM investigations, showing that the reaction process can basically be described as Ti3Al and C → TiAl and TiC → Ti2AlC and TiC → ψ and TiC → Ti5Al2C3 and TiC → Ti3AlC2, where the key ψ, a modulated Ti2AlC structure, is determined for the first time containing alternate-displacement Al layers along (0 0 0 2) of Ti2AlC phase with a distinct selected area electron diffraction pattern. Such alternant displacement is considered a precondition of forming Ti5Al2C3 through topotactic transition, followed by Ti5Al2C3 converting into Ti3AlC2 by the diffusion of Ti, C atoms in the outside TiC. Several parallel orientations can be observed through the phase transition process: Ti2AlC (0 0 0 2)//ψ (0 0 0 1), ψ (0 0 0 1)//Ti5Al2C3 (0 0 0 3), Ti5Al2C3 (0 0 0 3)//Ti3AlC2 (0 0 0 2). Such parallel orientations among these phases apply an ideal condition for the topotactic reaction. The distinct path of the phase transition brings a significant change of heat effect compared with the traditional method, leading to a fast reaction rate and a mild reaction condition. 相似文献
14.
Sylvain Badie Apurv Dash Yoo Jung Sohn Robert Vaßen Olivier Guillon Jesus Gonzalez-Julian 《Journal of the American Ceramic Society》2021,104(4):1669-1688
Submicron Ti2AlC MAX phase powder was synthesized by molten salt shielded synthesis (MS3) using a Ti:Al:C molar ratio of 2:1:0.9 at a process temperature of 1000°C for 5 hours. The synthesized powder presented a mean particle size of ~0.9 µm and a purity of 91 wt. % Ti2AlC, containing 6 wt. % Ti3AlC2. The Ti2AlC powder was sintered by pressureless sintering, achieving a maximal relative density of 90%, hence field-assisted sintering technology/spark plasma sintering was used to enhance densification. The fine-grained microstructure was preserved, and phase purity of Ti2AlC was unaltered in the latter case, with a relative density of 98.5%. Oxidation was performed at 1200°C for 50 hours in static air of dense monolithic Ti2AlC with different surface finish, (polished, ground and sandblasted) which resulted in the formation of an approx. 8 µm thin aluminum oxide (Al2O3) layer decorated with titanium dioxide (rutile, TiO2) colonies. Surface quality had no influence on Al2O3 scale thickness, but the amount and size of TiO2 crystals increased with surface roughness. A phenomenon of rumpling of the thermally grown oxide (TGO) was observed and a model to estimate the extent of deformation is proposed. 相似文献
15.
《Ceramics International》2022,48(18):26618-26628
Oxidation and hot corrosion behaviours of Ti3SiC2, Ti2AlC and Cr2AlC at 750 °C were investigated in this work. Ti3SiC2 and Ti2AlC showed a linear increase in mass gain and a relatively poor oxidation resistance. This might be attributed to the porous TiO2 scale. A dense α-Al2O3 layer was formed during the oxidation test. Cr2AlC exhibited the best oxidation resistance. This dense oxide scale can effectively isolate the substrate from contact with oxygen leading to excellent oxidation resistance. In contrast to the oxidation test, Ti3SiC2 and Ti2AlC showed relatively better resistance to hot corrosion, while Cr2AlC showed inferior resistance to NaCl introduced hot corrosion. The hot corrosion mechanism of the MAX phases was analyzed. Due to the formation of Na2TiO3, Ti containing MAX phases showed a continuous increase in the mass gain. The corrosion products of Cr2AlC were Al2O3, Cr2O3 and Na2CrO4. However, due to the volatilization of Na2CrO4, Cr2AlC showed a mass loss during the hot corrosion test. The chemical reaction process of the MAX phase was also analyzed. 相似文献
16.
Preparation of TiC/Ti2AlC coating on carbon fiber and investigation of the oxidation resistance properties 下载免费PDF全文
Mian Li Kai Wang Ji Wang Dewu Long Yanqin Liang Liu He Feng Huang Shiyu Du Qing Huang 《Journal of the American Ceramic Society》2018,101(11):5269-5280
MAX phases were proposed as the interphase materials for carbon fiber reinforced ceramic matrix composites toward the applications in high‐dose irradiation and oxidation environments. A thickness‐controllable TiC/Ti2AlC coating was fabricated on carbon fiber using an in situ reaction in a molten salt bath. The coating showed a multilayered structure, in which the inner layer was TiC and the outer layer was Ti2AlC. The influence of the reaction conditions on the morphology, composition, and thickness of the coating was investigated. The oxidation resistance properties of the as‐prepared TiC/Ti2AlC‐coated carbon fiber in static air and water vapor flow at elevated temperatures were investigated. The results showed that the as‐prepared TiC/Ti2AlC coating could provide good protection to the carbon fiber in both static air and water vapor flow up to 800°C. As these TiC and Ti2AlC materials have good irradiation resistance, the present work provides a potential way to develop an irradiation‐resistant interphase of carbon‐fiber‐reinforced ceramic matrix composites for nuclear applications. Furthermore, this work also provides a feasible way to prepare carbide/MAX phase coating on other carbon materials. 相似文献
17.
《Ceramics International》2023,49(3):4863-4871
Biochar was proposed as a novel carbon source for synthesizing Ti3SiC2 powder with high purity by a simple pressureless sintering at 1673 K, and Ti3SiC2 grains exhibited the typical nanolayered structure. The oxidation behavior of Ti3SiC2 powder showed the parabolic law during isothermal oxidation from 1273 K to 1473 K. Dense and continuous oxidation layer consisting of mixed TiO2 and SiO2 was formed rapidly on the surface of Ti3SiC2 particles as a diffusion barrier, which effectively retarded the inward diffusion of oxygen, conferring good oxidation resistance of the powder. 相似文献
18.
《Ceramics International》2016,42(8):9972-9980
Ti3SiC2/Cu composites with different contents of Cu were fabricated by mechanical alloying and spark plasma sintering method. The phase composition and structure of the composites were analyzed by X-ray diffractometry and scanning electron microscopy equipped with energy dispersive spectroscopy. The mechanical and tribological properties of Ti3SiC2/Cu composites were tested and analyzed compared with monolithic Ti3SiC2 in details. The results show that the Cu leads to the decomposition of Ti3SiC2 to produce TiCx, Ti5Si3Cy, Cu3Si, and TiSi2Cz. The friction coefficient and wear rate of the composites are lower than that of monolithic Ti3SiC2, which is ascribed to the fixing effect of hard TiCx, Ti5Si3Cy, and Cu3Si to inhibit the abrasive friction and wear. However, at elevated temperatures (ranging from room temperature to 600 °C) the friction and wear of the composites are higher than those at room temperature. Plastic flowing and tribo-oxidation wear accompanied by material transference contribute to the increased friction and wear at elevated temperatures. 相似文献
19.
Clio Azina Tim Bartsch Damian M. Holzapfel Martin Dahlqvist Johanna Rosen Lukas Löfler Alba San Jose Mendez Marcus Hans Daniel Primetzhofer Jochen M. Schneider 《Journal of the American Ceramic Society》2023,106(4):2652-2665
Herein we report on the synthesis of a metastable (Cr,Y)2AlC MAX phase solid solution by co-sputtering from a composite Cr–Al–C and elemental Y target, at room temperature, followed by annealing. However, direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room-temperature depositions, followed by annealing to 760°C led to the formation of phase pure (Cr,Y)2AlC by diffusion. Higher annealing temperatures caused a decomposition of the metastable phase into Cr2AlC, Y5Al3, and Cr-carbides. In contrast to pure Cr2AlC, the Y-containing phase crystallizes directly in the MAX phase structure instead of first forming a disordered solid solution. Furthermore, the crystallization temperature was shown to be Y-content dependent and was increased by ∼200°C for 5 at.% Y compared to Cr2AlC. Calculations predicting the metastable phase formation of (Cr,Y)2AlC and its decomposition are in excellent agreement with the experimental findings. 相似文献
20.
G‐P. Bei G. Laplanche V. Gauthier‐Brunet J. Bonneville S. Dubois 《Journal of the American Ceramic Society》2013,96(2):567-576
In this study, we report on the compressive behavior of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases at room temperature. We found that these two phases could be classified as Kinking Nonlinear Elastic (KNE) solids. The cyclic compressive stress–strain loops for Ti3AlC2 and Ti3Al0.8Sn0.2C2 are typical hysteretic and fully reversible. At failure, both compositions fracture in shear with maximum stresses of 545 MPa for Ti3AlC2 and 839 MPa for Ti3Al0.8Sn0.2C2. Consequently, the macroshear stresses for failure, τc, are 185 MPa and 242 MPa for Ti3AlC2 and Ti3Al0.8Sn0.2C2, respectively. In addition to the grain size effects, the presence of a ductile TixAly intermetallic distributed in the grain boundaries plays an important role in the enhancement of the ultimate compressive and macroshear stresses for Ti3Al0.8Sn0.2C2. SEM observations reveal that these two MAX phases exhibit crack deflections, intragranular fractures, kink band formation and delaminations, grain push‐in and pull‐out. 相似文献