首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(5):6311-6317
Optimized Al:ZnO sputtering target was prepared by cold isostatic pressing (CIP) using nanostructured zinc oxide powder and aluminum oxide powder as raw material. Compared with the target prepared by conventional raw materials, the performance of the optimized Al:ZnO sputtering target is greatly improved. The microstructure of the optimized Al:ZnO sputtering target is refined and its average grain size is less than 5 μm with 99.7% theoretical density. Al:ZnO thin films of both optimized and conventional targets were prepared by RF magnetron sputter and their properties were characterized, respectively. The Al:ZnO thin films obtained by optimized target feature better uniformity and compactness, and the internal stress is −378.8 MPa, which is nearly 2/3 lower than that of the conventional target. The film obtained by optimized targets also features a 97% IR transmittance, 1.71 nm Rq surface roughness and non-offset (002) XRD peak. It can be speculated that the optimized Al:ZnO target has great potential to prepare micrometer scale Al:ZnO films and employed in thin-film ZnO device industry.  相似文献   

2.
We report the synthesis and characterization of non-stoichiometric Ga2O3-x thin films deposited on sapphire (0001) substrates by radio-frequency powder sputtering. The chemical and electronic states of the non-stoichiometric Ga2O3-x thin films were investigated. By sputtering in an Ar atmosphere, the as-grown thin films become non-stoichiometric Ga2O2.7, due to the difference in sputtering yield between Ga and O species of the Ga2O3 target. The electronic states of the thin films consist of ~85% Ga3+ and ~15% Ga1+, corresponding to Ga2O3 and Ga2O, respectively. The films have the electrical characteristics of a semiconductor, with electrical conductivity of approximately 5.0 × 10-4 S cm-1 and a carrier concentration of 4.5 × 1014 cm-3 at 300 K.  相似文献   

3.
《Ceramics International》2020,46(2):1281-1296
Pb(Zr,Ti)O3 (PZT) ferroelectric ceramic films exhibit highly superior ferroelectric, pyroelectric and piezoelectric properties which are promising for a number of applications including non-volatile random access memory devices, non-linear optics, motion and thermal sensors, tunable microwave systems and in energy harvesting (EH) use. In this research, a thin layer of PZT was deposited on two different substrates of Strontium Titanate (STO) and Strontium ruthenate (SRO) by powder magnetron sputtering (PMS) system. The preliminary powders, consisting of PbO, ZrO2 and TiO2, were manually mixed and placed into the target holder of the PMS. The deposition was performed at an elevated temperature reaching up to 600 °C via a ceramic heater. This high temperature is required for PZT thin film crystallinity, which is never achieved in conventional physical vapour deposition processes. The phase structure, crystallite size, stress-strain and surface morphology of deposited thin films were characterized using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The composition of the PZT thin films were also analysed by X-ray photoelectron spectroscopy (XPS). The mechanical properties of the thin films were evaluated with micro-scratch adhesive strength and micro hardness equipment. FESEM results showed that the PZT thin films were successfully deposited on both SRO and STO substrates. The surfaces of the coated samples were free from cracks, relatively smooth, uniform and dense. The profile of X-ray diffraction confirmed the formation of single-c-domain/single crystal perovskite phase grown on both substrates. The XPS analysis have shown that the PZT thin film grown by this method and that a target of PZT+10% PbO is a proper target for growing nominal PZT thin films. The adhesion strength and micro hardness results have confirmed the stability and durability of the thin film on the substrates, although higher values have been reported for thin film of PZT deposited on SRO surfaces.  相似文献   

4.
Several ZnO:Al thin films have been successfully deposited on glass substrates at different substrate temperatures by RF (radio frequency) magnetron sputtering method. Effects of the substrate temperatures on the optical and electrical properties of these ZnO:Al thin films were investigated. The UV–VIS–NIR spectra of the ZnO:Al thin films revealed that the average optical transmittances in the visible range are very high, up to 88%. X-ray diffraction results showed that crystallization of these films was improved at higher substrate temperature. The band gaps of ZnO:Al thin films deposited at 25 ℃, 150 ℃, 200 ℃, and 250 ℃ are 3.59 eV, 3.55 eV, 3.53 eV, and 3.48 eV, respectively. The Hall-effect measurement demonstrated that the electrical resistivity of the films decreased with the increase of the substrate temperature and the electrical resistivity reached 1.990×10?3 Ω cm at 250 ℃.  相似文献   

5.
6.
《Ceramics International》2016,42(8):9599-9604
Ti/Mo bilayer thin films were deposited onto Al2O3 ceramic by magnetron sputtering with a subsequent high temperature sintering to ensure the robust brazing of Al2O3 ceramic to Kovar (Fe–Ni–Co) alloy. The interface reaction process between Ti film and Al2O3 ceramic as well as the joining strength between metallized Al2O3 ceramic and Kovar alloy were investigated systematically using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and electronic universal testing machine. The results show that the active Ti film can react with Al2O3 ceramic to form Ti3Al and TiO during high-temperature sintering process, in which the amount, size and morphology of TiO crucially depend on the sintering temperature. As the sintering temperature reaches 1200 °C, a plenty of spherical TiO nanoparticles with ~ 150 nm in diameter and metallic nature can be created across the Ti/Al2O3 interfaces, which can effectively act as ‘bridges’ to join Ti film to Al2O3 substrate firmly. Hence, the optimal joining strength of 69.6±3.1 MPa between metallized Al2O3 ceramic and Kovar alloy can be obtained, much better than those counterparts metallized at 900 °C and 1050 °C almost without the existence of observable TiO.  相似文献   

7.
Silicon-rich Al2O3 films (Six(Al2O3)1−x) were co-sputtered from two separate silicon and alumina targets onto a long silicon oxide substrate. The effects of different annealing treatments on the structure and light emission of the films versus x were investigated by means of spectroscopic ellipsometry, X-ray diffraction, micro-Raman scattering, and micro-photoluminescence (PL) methods. The formation of amorphous Si clusters upon the deposition process was found for the films with x ≥ 0.38. The annealing treatment of the films at 1,050°C to 1,150°C results in formation of Si nanocrystallites (Si-ncs). It was observed that their size depends on the type of this treatment. The conventional annealing at 1,150°C for 30 min of the samples with x = 0.5 to 0.68 leads to the formation of Si-ncs with the mean size of about 14 nm, whereas rapid thermal annealing of similar samples at 1,050°C for 1 min showed the presence of Si-ncs with sizes of about 5 nm. Two main broad PL bands were observed in the 500- to 900-nm spectral range with peak positions at 575 to 600 nm and 700 to 750 nm accompanied by near-infrared tail. The low-temperature measurement revealed that the intensity of the main PL band did not change with cooling contrary to the behavior expected for quantum confined Si-ncs. Based on the analysis of PL spectrum, it is supposed that the near-infrared PL component originates from the exciton recombination in the Si-ncs. However, the most intense emission in the visible spectral range is due to either defects in matrix or electron states at the Si-nc/matrix interface.  相似文献   

8.
The growth rate and dielectric properties of the Ba(SnxTi1−x)O3 (BSxT1−x) thin films prepared by radio frequency (rf) magnetron sputtering at room temperature have been characterized as a function of deposition parameters. The BSxT1−x thin films are amorphous when deposited at low rf power (Rp = 100 and 125 W). The XRD result shows merely a single perovskite (BaTiO3) structure and the intensity of reflection peaks increases with the rf power increasing from 125 to 150 and 175 W. When the BSxT1−x thin film is deposited at Rp = 150 W and room temperature, the deposition rate decreases with the increasing working pressure (Wp) and O2/(O2 + Ar) ratio (Or). The refractive index of the BSxT1−x thin films is between 2.1 and 2.3, which shows that the variation of working pressure is not very significant. The dielectric constant of the BSxT1−x thin films increases with the Rp increasing from 100 to 150 W and decreases above 150 W. The leakage current density of the BS0.15T0.85 thin films nearly displays the ohmic behavior when the electric field is below 50 kV/cm. The conduction mechanism of the BS0.15T0.85 thin films involves the Schottky emission (SE) and Poole–Frenkel emission (PF) models. The BSxT1−x thin film shows a ferroelectric characteristic in the polarization-electric field plot.  相似文献   

9.
《Ceramics International》2016,42(5):5762-5765
Crystalline CaLa4(Zr0.05Ti0.95)4O15 thin films deposited on n-type Si substrates byRF magnetron sputtering at a fixed RF power of 100 W, an Ar/O2 ratio of 100/0, an operating pressure of 3 mTorr, and different substrate temperatures were investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction and atomic force microscopy were sensitive to the deposition conditions, such as the substrate temperature. The diffraction pattern showed that the deposited films had a polycrystalline microstructure. As the substrate temperature increased, the quality of the CaLa4(Zr0.05Ti0.95)4O15 thin films improved, and the kinetic energies of the sputtered atoms increased, resulting in a structural improvement of the deposited CaLa4(Zr0.05Ti0.95)4O15 thin films. A high dielectric constant of 16.7 (f=1 MHz), a dissipation factor of 0.19 (f=1 MHz), and a low leakage current density of 3.18×10−7 A/cm2 at an electrical field of 50 kV/cm were obtained for the prepared films.  相似文献   

10.
(Al2OC)1−x(AlN)x solid solution-reinforced Si–Al2O3 composite was successfully synthesized by designed heating of the Al–Si–Al2O3 composite to 580°C and held for 8 hours, followed by heating to 1300°C at a rate of 12°C/h in flowing nitrogen. The reaction mechanism is as follows: after the Al–Si–Al2O3 composite is heated to 580°C and held for 8 hours, an AlN cladding is formed on the surface of the Al powder, thus the composite is preconverted into (Al–AlN cladding structure)–Si–Al2O3 system. With increasing temperature, the AlN cladding ruptures and the reactive Al(l) flows out. The Al(l) preferentially undergoes active oxidation to form metastable Al2O(g), which lowers PO2 inside the composite and inhibits the active oxidation of Si. Moreover, ultrafine carbon is produced by the pyrolysis of the phenolic resin binder. Both metastable Al2O(g) and ultrafine carbon are highly reactive. Therefore, under the induction of AlN and N2, (Al2OC)1−x(AlN)x solid solution is formed by the reaction which easily occurs at a relatively low temperature. In the presence of a large amount of Al2O(g), the PO2 in the composite does not satisfy the condition required for both Si nitridation and active oxidation, so the free Si remains stable in the composite, forming a metal-non-oxide-oxide composite. The cold crushing strength of the composites is up to 305 MPa, and the composites do not show hydration after 20 months of storage in the environment.  相似文献   

11.
《Ceramics International》2017,43(8):6385-6396
This study is mainly focused on dielectric properties of lead arsenate glasses crystallized with different concentrations of CuO over continuous ranges of frequency (3 Hz −100 kHz) and temperature (300–633 K). The glasses were prepared by melt quenching technique and were heat treated for prolonged time for ceramization. Prepared samples were characterized by XRD, SEM and DSC techniques. SEM studies indicated that the samples are composed of small crystal grains of the size varying from 0.2 to 1.0 µm cemented with the residual glass phase. XRD studies indicated CuAs2O4, Pb2Cu7(AsO4)6 and Cu2O are the main crystal phases developed during the crystallization. Optical absorption studies confirmed the presence of copper ions in Cu+ valence state in addition to Cu2+ state and the fraction of Cu+ ions is found to increase with the content of CuO. The optical band gap exhibited increasing trend with CuO content. IR spectral studies indicated an increase of degree of polymerization of the glass network with the CuO content. The observed variations of dielectric parameters with frequency, temperature and CuO content are discussed using different polarization mechanisms. The dielectric relaxation effects exhibited by the loss tangent and the electric moduli are analyzed using graphical method and observed relaxation effects are attributed to the complexes of divalent copper ions with oxygens. The impedance diagrams indicated increase of bulk resistance of the samples with increase of CuO content. The ac conductivity exhibited a decreasing trend with increase of CuO content. The conduction phenomenon is explained using polaron hopping between Cu+ and Cu2+ ions. The temperature independent part of the conductivity is explained using quantum mechanical tunneling (QMT) model. Finally, it is concluded that the insulating strength of the material increased with CuO content and such materials may be useful as electrical insulators in the low temperature region  相似文献   

12.
(CaO)1–x (ZnO) x mixed oxides (x=0–1), heated at 1423 K under atmospheric conditions, were checked for their catalytic activity in the N2O decomposition in the temperature range of 450–650°C. Although the catalytic activity was measured in the dark, it was found to be linearly related with the photoluminescence intensity of the catalysts.  相似文献   

13.
《Ceramics International》2023,49(3):4482-4504
Three kinds of Dy3+ ion-doped (LuxY1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals fabricated by the Czochralski method with 4 at.% Dy3+ ion doping were investigated by indentation and scratch techniques under Vickers, Knoop, Berkovich, and spherical indenters to understand the influence of Lu ion on micromechanical properties and fracture behavior of Y3Al5O12 (i.e. YAG for x = 0) single crystals. The largest (or smallest) values of hardness, elastic modulus, and fracture toughness were found for x = 1/3 (or 1/2). The indentation size effect was explained by four different models with the Hays-Kendall approach being the most suitable one to determine the true hardness. Fracture toughness values of YAG crystals obtained by the Vickers hardness method agreed with those obtained by scratching with a spherical indenter based on linear elastic fracture mechanics.  相似文献   

14.
ZnO reducibility in three component catalysts was monitored in a methanol stream by a microbalance. The ZnO in the Cu/ZnO is reduced in the methanol stream from ca 500 K, but the addition of a third component to Cu/ZnO can suppress the reduction of ZnO. The Cu/ZnO/Cr2O3 prepared from a hydrotalcite-like precursor shows high stability in methanol dehydrogenation. The high stability of Cu/ZnO/Cr2O3 is due to the stabilization of ZnO by formation of ZnCr2O4 even in the reduced condition.  相似文献   

15.
《Ceramics International》2016,42(13):14581-14586
Aluminum and gallium co-doped ZnO (AGZO) thin films were grown by simple, flexible and cost-effective spray pyrolysis method on glass substrates at a temperature of 230 °C. Effects of equal co-doping with aluminum (Al) and gallium (Ga) on structural, optical and electrical properties were investigated by X-ray diffraction (XRD), UV–vis–NIR spectrophotometry and Current–Voltage (I–V) measurements, respectively. XRD patterns showed a successful growth with high quality polycrystalline films on glass substrates. The predominant orientation of the films is (002) at dopant concentrations ≤2 at% and (101) at higher dopant concentrations. Incorporation of Al and Ga to the ZnO crystal structure decreased the crystallite size and increased residual stress of the thin films. All films were highly transparent in the visible region with average transmittance of 80%. Increasing doping concentrations increased the optical band gap, from 3.12 to 3.30 eV. A blue shift of the optical band gap was observed from 400 nm to 380 nm with increase in equal co-doping. Co-doping improved the electrical conductivity of ZnO thin films. It has been found from the electrical measurements that films with dopant concentration of 2 at% have lowest resistivity of 1.621×10−4 Ω cm.  相似文献   

16.
《Ceramics International》2017,43(7):5693-5701
Self-aligned and equal-spaced zinc oxide (ZnO) nanotube arrays were fabricated with anodic aluminum oxide (AAO)-assisted growth and the ALD technique. The near band-edge (NBE) emission was strongly affected by the nanotube's geometrical parameters, such as a packing density and thickness of the nanotube walls. The NBE emission was further enhanced with Al2O3 coating. The effect was analyzed by X-ray photoelectron spectroscopy (XPS) and ascribed to the surface defect passivation and a ZnAl2O4 spinel formation. The NBE emission enhancement was greater in ZnO nanotubes with thicker walls. A smaller UV enhancement factor was explained by less uniform and integral Al2O3 coverage of the ZnO nanotubes with thinner walls; this, possibly induced a variation of the Al2O3 refractive index along the nanotubes. As a result, the optical conditions at the ZnO/Al2O3/air interfaces was changed and the light extraction efficiency was reduced in the latter samples.  相似文献   

17.
Ba(ZrxTi1−x)O3 (BZT) thin films were deposited via sol–gel process on LaNiO3, as buffer layer, and Pt-coated silicon substrates. The BZT films were perovskite phase and showed a (1 0 0) preferred orientation dependent upon zirconium content. The grain size decreased and the microstructure became dense with increasing zirconium content. The addition of Zr to the BaTiO3 lattice decreased the grain size of the crystallized films. The temperature dependent dielectric constant revealed that the thin films have relaxor behavior and diffuse phase transition characteristics that depend on the substitution of Zr for Ti in BaTiO3. The dependence of electrical properties on film thickness has been studied, with the emphasis placed on dielectric nonlinear characteristics. Ba(Zr0.35Ti65)O3 thin films with weak temperature dependence of tunability in the temperature range from 0 to 130 °C could be attractive materials for situations in which precise control of temperature would be either impossible or too expensive.  相似文献   

18.
《Ceramics International》2022,48(22):33229-33235
The development of miniaturized and lightweight electronic equipment requires the improvement of the dielectric breakdown strength and energy storage performance of dielectric capacitors. Therefore, in this study, a method for obtaining an amorphous phase by reducing the annealing temperature of a material is proposed to considerably improve the electrical breakdown, and a high-polarized substance is introduced to compensate for the polarization of the material. Lead-free xBiMg0.5Zr0.5O3-(1-x)BaZr0.25Ti0.75O3 (abbreviated as xBMZ-(1-x)BZT, x = 0.01, 0.02, 0.03, 0.04, and 0.05) thin films were prepared on Pt/Ti/SiO2/Si substrates by using the sol-gel spin-coating method. The microstructure with coexisting nanocrystalline and amorphous phases was successfully controlled by reducing the annealing temperature and employing a rapid annealing process. All the films with this microstructure exhibited extremely high breakdown strength, and the effectiveness of this method was verified. When x = 0.04, the ultra-high breakdown strength of 6640 kV/cm, high energy storage density of 81.6 J/cm3 and high energy storage efficiency of 87% were achieved. Moreover, the dielectric and energy storage performance were excellent under temperatures from 20 °C to 200 °C. This study presents a feasible approach for designing new high-performance dielectric capacitors for energy storage devices in the future.  相似文献   

19.
Element doping into the Cu2ZnSn(S,Se)4 (CZTSSe) absorber is an effective method to optimize the performance of thin film solar cells. In this study, the Cu2InxZn1-xSn(S,Se)4 (CIZTSSe) precursor film was deposited by magnetron cosputtering technique using indium (In) and quaternary Cu2ZnSnS4 (CZTS) as targets. Meanwhile, the In content was controlled using the direct current (DC) power on In target (PIn). A single kesterite CIZTSSe alloy was formed by successfully doping a small number of In3+ into the main lattice of CZTSSe. The partial Zn2+ cations were substituted by In3+ ions, resulting in improving properties of CZTSSe films. Morphological analysis showed that large grain CIZTSSe films could be obtained by doping In. The well-distributed, smooth, and dense film was obtained when the PIn was 30 W. The band gap of CIZTSSe could be continuously adjusted from 1.27 to 1.05 eV as PIn increased from 0 to 40 W. In addition, the CIZTSSe alloy thin film at PIn = 30 W exhibited the best p-type conductivity with Hall mobility of 6.87 cm2V?1s?1, which is a potential material as the absorption layer of high-performance solar cells.  相似文献   

20.
将组合材料芯片技术中四元组合法应用于新型发光材料Gd3(1-x)Al5O12:RE3X的RE激活剂和敏化剂种类优选.由Gd3Al5O12基体材料芯片获得如下的研究结果:1)在紫外激发下(254 nm)Gd3(1-x)Al5O3:Eu3x材料具有红色荧光性能;2)Pr(n(Pr):n(Eu)<1:10)、Ce(n(Ce):n(Eu)<1:10)共掺杂时会降低发光强度.光谱分析表明:Pr、Ce能级嵌入,使得激活剂和敏化剂发生共振能量传递,是Gd3Al5O12:Eu(简称为GAG:Eu)发光效率降低的主要原因.筛选结果得到柠檬酸盐硝酸盐溶胶凝胶法制备粉体筛选实验结果验证.实验结果表明组合法在发光材料开发上具有高效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号