首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As one of the ceramic matrix composites (CMCs), carbon fiber-reinforced silicon carbide matrix (C/SiC) composites are promising materials used in various engineering applications owing to their superior properties. Precision surface grinding has been widely applied in the machining of CMC composites; however, the material removal mechanisms of C/SiC composites have not been fully elucidated yet. To reveal the material removal mechanisms in the grinding of chemical vapor infiltration-fabricated C/SiC composites, novel single-abrasive scratch tests were designed and conducted in two typical cutting directions. The experimental parameters, especially the cutting speed, conformed to the actual grinding process. The results show that the grinding parameters (feed rate, spindle speed, depth of cut, and cutting direction) have significant influences on the grinding forces, surface integrity, and affected subsurface region. The tangential force is in general larger than the normal force at the same cutting depth. Furthermore, both the tangential and normal forces in the longitudinal cutting direction are larger than those in the transverse cutting direction. The impacts and abrasive actions at the tool tip mainly caused the material removal. The predominant material removal mode is brittle fracture in the grinding of unidirectional C/SiC composites, because the damage behaviors of the C/SiC composites are mainly the syntheses of matrix cracking, fiber breakage, and fiber/matrix interfacial debonding. These results are rationalized based on the composite properties and microstructural damage features.  相似文献   

2.
The fatigue damage process of SiC coated needled C/SiC composite specimen was monitored by acoustic emission (AE) under tension-tension cyclic loading. By analyzing the collected AE parameters of the composite, it is found that Kaiser effect enhances with the increase of stable cycles in the fatigue process. Moreover, multivariate K-means cluster analysis of AE parameters was carried out after the standardization of energy, amplitude, peak frequency and duration of AE signal. By comparing the objective function values of different number of clusters, and referring to the intra group variance and the variance between groups, the damage modes of the needled C/SiC composite are finally divided into four clusters, and the characteristics of AE parameters with different damage modes can be obtained. Furthermore, by referring to the microstructure characteristics of needled C/SiC composite, various damage modes at different fatigue stages were analyzed. In addition, the fracture morphology of the specimen was also observed by scanning electron microscope after fatigue fracture.  相似文献   

3.
This paper proposes a new approach to the analysis of acoustic emission data. The energy of acoustic emission signals recorded at two sensors is used to evaluate real-time energy attenuation due to damage accumulation. The method is applied to acoustic emission data recorded during static fatigue tests at intermediate temperatures on ceramic matrix composites. The evaluation of energy attenuation appears as a new indicator for damage monitoring and lifetime prediction, the attenuation increase being attributed to transverse matrix cracks opening.  相似文献   

4.
《Ceramics International》2019,45(11):13847-13858
The damage mechanisms of carbon fiber reinforced silicon carbide (C/SiC) composites under static loading are investigated using the acoustic emission technology. The C/SiC sample is subjected to compressing static load, and acoustic emission is used to monitor the cracking process. In addition, the digital image correlation technique is also applied to enhance the comprehension of the damage mechanisms of C/SiC composites. To evaluate their extent of damage, the main acoustic emission characteristic parameters and indexes are extracted. The k-means clustering method is used to analyze the acoustic emission (AE) signals, identify the three damage modes, and determine the central values of the AE parameters of these modes. The time–frequency energy of some typical signals is analyzed by using the wavelet packet transform. Thereafter, the damage evolution is described by analyzing the cumulative number of acoustic emission events and the cumulative energy change with loading time. Moreover, the digital imaging results show that the strain in the structure increases with the increase in loading magnitude, especially in the area around the fault zone, where the strain level is evidently higher than those in other locations. Accordingly, this necessitates effective methods for investigating damage in C/SiC composites. Among the two different technologies implemented in this work, the extraction of AE events at several stages of the test allows the classification and analysis of crack evolution in C/SiC structures; this technique also provides an effective methodology to monitor the damage at the microscopic scale.  相似文献   

5.
《Ceramics International》2022,48(4):4699-4709
The analysis of failure behaviors of continuous fiber-reinforced ceramic matrix composites (CMCs) requires the characterization of the damage evolution process. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso architecture, inherent defects, and loading conditions. In this paper, the in-plane tensile mechanical behavior of a plain woven SiCf/SiC CMC was investigated, and damage evolution and failure process were studied in detail by digital image correlation (DIC) and acoustic emission (AE) methods. The results show that: the initiation of macro-matrix cracks have obvious local characteristic, and the propagation paths are periodically distributed on the material surface; different damage modes (matrix cracking and fiber fracture) would affect the AE energy signal and can be observed in real-time; the significant increase of AE accumulated energy indicates that serious damage occurs inside the material, and the macroscopic mechanical behavior exhibits nonlinear characteristic, which corresponds to the proportional limit stress (PLS) of the material.  相似文献   

6.
In this work, we study the fatigue behavior of a C/SiC composite produced by several cycles of polymer infiltration and pyrolysis (PIP). Fatigue tests were performed with maximum stresses corresponding to 60–90% of the tensile strength of the composite. During the fatigue tests, acoustic emission (AE) monitoring was performed and the measured AE energy was utilized to quantify the damage and distinguish possible damage mechanisms. Most of the fatigue damage in the form of matrix cracking, interface damage and fiber breakage occurs in the first cycle. As loading cycles proceeded, damage in form of matrix crack re-opening and interfacial friction constantly accumulates. Nevertheless, all samples survived the run-out of 1,000,000 cycles. After the fatigue tests, an increase of the tensile strength is observed. This phenomenon is associated with the relief of process-induced internal thermal stresses and the weakening of the fiber-matrix interface. In general, the studied material shows very high relative fatigue limit of 90% of its tensile strength.  相似文献   

7.
Creep tests of 2D-C/SiC in a wet oxidizing atmosphere were implemented for six samples. The loading process was monitored by acoustic emission (AE). Principal component analysis and a fuzzy clustering algorithm were used to perform pattern recognition of the AE data. All of the AE events were divided into four clusters and labelled as matrix cracking, interfacial damage, fiber breakage and fiber-bundle breakage respectively, according to their physical origin. It was found C/SiC has very scattered rupture lifetimes even under the same test conditions, and the evolution of AE events corresponding to fiber failure is quite different. With increasing rupture lifetime, the AE energy of fiber-bundle breakage is higher, while the number of these events is less. Thus, it is concluded that local oxidation and damage development is the controlling failure mechanism for short-lived specimens and uniform oxidation and damage development is the controlling failure mechanism for long-lived specimens.  相似文献   

8.
Fatigue resistance and damage mechanisms of 2D woven SiC/SiC composites at high temperatures were investigated in this research. Fatigue behavior tests were performed at 1200℃ and 1000°C at 10 Hz and stress ratio of 0.1 for maximum stresses ranging from 80 to 120 MPa, and the fatigue run-out could be defined as 106 cycles. Evolution of the cumulative displacement and normalized modulus with cycles was analyzed for each fatigue condition. Fatigue run-out was achieved at 80 MPa and 1000°C. It could be found that the cycle lifetimes of the composites decreased sharply with the increasing maximum stress and temperature conditions significantly affected the fatigue performance under matrix cracking stress. The cumulative displacement showed no noticeable increase before 1000 cycles and the modulus of the failed specimens decreased before fracture. The retained properties of composites that achieved fatigue run-out, as well as the microstructures, were characterized in order to understand the fatigue behavior and failure mechanisms. The composites exhibited similar fracture morphology with matrix crack extension and glass phase oxidation formation under different conditions. In general, the high-temperature fatigue damage and failure of composites could be affected by combination of stress damage and oxidative embrittlement.  相似文献   

9.
Tensile creep properties of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fibers were studied in vacuum at 1300°C∼1430°C. The fracture morphology was observed by scanning electron microscopy and the damage of fiber in 2D-SiCf/SiC composites was characterized by nanoindentation. Moreover, the microstructure of the composite was investigated by high-resolution transmission electron microscopy. The results show that rupture time is much shortened and steady-state creep rate increase three orders of magnitude when creep temperature is higher than 1400°C. There are two different creep damage mechanisms due to the decrease of interfacial bonding strength at high temperature. The amorphous SiOxCy phase in the fibers can crystallize into SiC and C and the SiC grain grows in the fiber. The microstructural changes lead to the decrease of fiber strength and degrade the creep properties of the composite above 1400°C.  相似文献   

10.
In-situ synchrotron X-ray microtomography and acoustic emission (AE) were combined to study the behavior of ceramic matrix composite laminates subjected to in-plane tensile or flexural loading at room temperature. A detailed characterization of the initiation and progression of two key damage modes (matrix cracking and fiber breaks) is obtained from microtomography, and the relationship between damage and AE is directly observed. A graphical representation of AE data, which has potential for real-time use, is employed to reveal differences in damage progression due to fiber architecture or loading mode. In addition, strong empirical relationships are observed between matrix crack area and AE energy, as well as between fiber breaks and number of AE events.  相似文献   

11.
《Ceramics International》2020,46(11):18948-18957
Carbon fiber-reinforced silicon carbide (C/SiC) composites are widely used in high-temperature thermo-structural applications. They are subjected to extreme loading conditions, such as random vibrations, which are likely to damage the structure. Structural micro-damage identification during vibration is very difficult, owing to the randomness of the environmental vibration and the complicated response it causes in structures. This study aims to determine a method for monitoring the damage properties of a C/SiC structure under a random vibration environment using acoustic emission (AE) technology. First, a pencil break experiment is conducted to verify the feasibility of the AE technology. Then, an AE monitoring experiment of the structural damage in a vibration environment is systematically conducted. Two types of experiments are designed for simulating the damage formation process inside the structure. In addition, the parameter characteristics of typical AE signals in the random vibration test are analyzed, and the relationships between the AE signal parameters and vibration loading are obtained. Lastly, the different stages of material damage development and damage types in each stage are provided to reveal the damage evolution processes of C/SiC composites. The results indicate that AE technology can be effectively applied to investigate the damage behaviors of C/SiC composites in random vibration environments.  相似文献   

12.
《Ceramics International》2021,47(20):28821-28836
In this paper, a multi-scale modelling approach has been developed to predict the progressive damage and failure behaviour of 2D woven SiC/SiC composites. At the tow scale, non-linear tow properties have been determined by a micromechanics-based damage model, in which two scalar damage variables were introduced to characterize the fibre-dominated and matrix-dominated damage, respectively. Based on periodic boundary conditions, a meso-scale unit cell model has been established to simulate the macroscopic stress-strain responses and progressive damage processes of the composite under uniaxial tensile, compressive and in-plane shear loadings, respectively. In the numerical method, the non-linear properties of constituent materials have been implemented by the user defined subroutine, USDFLD of the finite element package, Abaqus. The numerical results and their comparisons with experimental stress-strain curves have been presented. The failure mechanisms of the composite under each loading have been also discussed. The high efficiency and prediction accuracy of the model make it possible to analyse large scale woven composites.  相似文献   

13.
The tensile test of 2D SiC(f)/BN(i)/(SiC-B4C)(m), with acoustic emission (AE) online monitoring, was carried out to study the mechanical properties and failure mechanism. Using the pattern recognition technique to find out the relationship between AE signals and damage mechanisms, an improved sentry function was proposed by choosing the AE energy of fiber breakage instead of the AE energy in its definition. Combined with the cumulative trend of each class of the AE signals, the damage evolution process was identified. It is found that the entire loading process includes four stages: (a) the linear elastic stage, there have sporadic AE events; (b) the initial damage stage, the matrix cracking contributes 80.4% of the AE energy and leads to the non-linear behavior of the stress-displacement curve; (c) the damage development stage, in which all types of damage continuously happen; and (d) the damage acceleration stage, dominated by fiber breakage that accounts for 60.1% of the AE energy. The improved sentry function has a decreasing trend during the fourth stage, which provides an early warning before failure, and gives a reliable ultimate strength.  相似文献   

14.
The complex damage mechanisms that accumulate within SiCf/SiC ceramic matrix composites (CMCs) subject to thermal and mechanical stress are being investigated in anticipation of the material’s introduction into high performance gas turbine engines. Acoustic emission (AE) is recognised as a leading non-destructive evaluation (NDE) tool to this end, and was used in this study to determine the so-called matrix cracking onset stress under tensile load as a function of temperature up to a maximum of 1100 °C. Onset stress was interpreted using three traditional measurements based on AE energy characteristics during monotonic tests to failure. Pattern recognition (PR) analysis was performed on the AE data, revealing a specific cluster of signals that correlated closely with the initial matrix cracking region of the stress-strain curve. Taken in isolation, the onset stress of this activity was significantly lower than the conventional value. PR results were investigated further, and isolated clusters were linked to damage modes anticipated at other specific regions of the stress history. A secondary series of experiments was performed on specimens representing the individual constituents of the CMC (single-phase SiC flexural bars, Hi-Nicalon? fibre bundles and SiCf/SiC mini-composites) in attempts to further validate the corresponding AE signal characteristics. Matrix cracking and interphase debonding/sliding damage modes could be identified consistently, while fibre breaks remained difficult to isolate under the current experimental conditions.  相似文献   

15.
Raman spectroscopy was utilized to characterize the chemical composition and residual stresses formed in melt infiltrated SiC/SiC CMCs during processing. Stresses in SiC fibers, in SiC chemical vapor (CVI) infiltrated matrix, in SiC melt infiltrated matrix, and in free silicon were measured for two different plates of CMCs. Stresses in the free silicon averaged around 2?GPa in compression, while stresses in the matrix SiC were 1.45?GPa in tension. The SiC CVI phase had stresses ranging between 0.9?GPa and 1.2?GPa in tension and the SiC fibers experienced stresses of .05–0.7?GPa in tension. These results were validated with the proposed model of the system. While the mismatch in the coefficients of thermal expansion between the constituents contributes to the overall residual stress state, the silicon expansion upon solidification was found to be the major contributor to residual stresses within the composite.  相似文献   

16.
SiC/SiC复合材料及其应用   总被引:1,自引:0,他引:1  
日本开发的Nicalon和Tyranno两种品牌的SiC纤维占有世界上绝对性的市场份额。SiC/SiC复合材料典型的界面层是500 nm厚的单层热解碳(PyC)涂层或多层(PyC-SiC)n涂层,在湿度燃烧环境及中高温条件下界面层的稳定性是应用研究的重点。SiC/SiC复合材料,包括CVI-SiC基体和日本开发的Tyranno hex和NITE-SiC基体等,具有耐高温、耐氧化性和耐辐射性的特点,在航空涡轮发动机部件、航天热结构部件及核聚变反应堆炉第一壁材料等方面正开展工程研制应用。  相似文献   

17.
《Ceramics International》2022,48(3):3109-3124
Due to the mismatch of the thermal expansion coefficients between the matrix and yarns, thermal residual stress will appear in C/SiC composites. In this paper, a progressive damage model was used to predict the thermal-mechanical behavior of C/SiC composites and reveal the failure mechanism. Firstly, the properties of the composites under tensile load were tested at three different temperatures in vacuum. Then, the elastic-plastic progressive damage constitutive laws were used and implemented by a user-defined subroutine UMAT in ABAQUS. The thermal residual stress evolution in the cooling and heating processes was characterized. Finally, the stress-strain curves of the composites under tensile load at different temperatures were studied. The effects of thermal residual stress on the tensile properties and progressive damage process of C/SiC composites were revealed sequentially. This work can give design guidance for strengthening of C/SiC composites.  相似文献   

18.
The relationship between acoustic emission (AE) and damage source areas in SiC/SiC minicomposites was modeled using insights from tensile testing in-scanning electron microscope (SEM). Damage up to matrix crack saturation was bounded by: (1) AE generated by matrix cracking (lower bound) and (2) AE generated by matrix cracking, and fiber debonding and sliding in crack wakes (upper bound). While fiber debonding and sliding exhibit lower strain energy release rates than matrix cracking and fiber breakage, they contribute significant damage area and likely produce AE. Fiber breaks beyond matrix crack saturation were modeled by two conditions: (i) only fiber breaks generated AE; and (ii) fiber breaks occurred simultaneously with fiber sliding to generate AE. While fiber breaks are considered the dominant late-stage mechanism, our modeling indicates that other mechanisms are active, a finding that is supported by experimental in-SEM observations of matrix cracking in conjunction with fiber failure at rupture.  相似文献   

19.
In order to further develop and understand the data provided by electrical resistance measurements, three ceramic matrix composites (CMCs) were characterized in tension. The observed changes of the electrical resistance were compared to the acoustic emission spectra, another commonly used damage monitoring method, as well as the classical interposed unloading/reloading cycles. A model was then proposed in order to predict the evolution of the resistance as a function of the damage state of the three composites. The proposed model provides accurate results for the three materials which, although they all belong to the CMC family, display different mechanical and physical behaviors.  相似文献   

20.
《Ceramics International》2017,43(9):6721-6729
This article presents experimental results for tensile creep deformation and rupture behavior of three-dimensional four-step braided SiC/SiC composites at 1100 °C and 1300 °C in air. The creep behavior at 1300 °C exhibited a long transient creep regime and the creep rate decreased continuously with time. The creep behavior at 1100 °C exhibited an apparent steady-rate regime and the creep deformation was smaller than that at 1300 °C. However, the creep rupture time at both temperatures showed little difference. The mechanisms controlling creep deformation and rupture behavior were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号