首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ITO thin films as the optical and electrical windows to transform photons and charges have been applied in many areas. Here, a leaf-like structured particle is composed of small particles growing along three different orientations leading to low thermal stress accompanied by well transmittance (85%) in a wide wavelength range from visible to near-infrared region and a narrowed band gap 3.07 eV. The evolution of structure and electronic performance was studied to obtain the low resistivity (12 μΩ m) and enhanced stability of the film (1000 °C). The leaf-like structure can be maintained under 600 ℃ and the electrical properties can be modified in He and N2 atmosphere, owing to the reduced defects, increased concentration of Sn and carrier mobility. Although the structure has changed after being annealed at 1000 °C in N2, the thin film performs excellent electrical properties (?3.44 × 1020 cm?3 and 28 cm2 V?1 s?1).  相似文献   

2.
Single‐ and multi‐layer transparent conductive oxide (TCO) thin films exhibiting high performance, good packing density and low surface/interface roughness are deposited on silica glass substrates by the sol–gel method. The crystal and microstructural properties of the TCO thin films are evaluated as an alternate to films prepared by ultra‐high vacuum deposition. Tin‐doped indium oxide (ITO) thin films produced using a two‐step drying process showed low surface roughness because of dense packing structure not only horizontal but also vertical directions. As a result, electrical conductivity, carrier concentration, carrier mobility, and optical transmittance of 2.3 × 103 S/cm, 8 × 1020 cm?3, 18 cm2/Vs, and over 98% at 500 nm, respectively, were achieved. A multilayer ZnO/ITO stacked structure was also fabricated using the sol–gel process. Our findings suggest that solution‐based methods show promise as an alternative to existing ultra‐high vacuum methods to fabricate TCO thin films.  相似文献   

3.
《Ceramics International》2022,48(7):9164-9171
The light-trapping structure is an effective method to increase solar light capture efficiency in the solar cells. In this study, Al-doped ZnO (AZO)/polystyrene (PS)/AZO tri-layer transparent conductive film with light-trapping structure was fabricated by magnetron sputtering and liquid phase methods. The structural, optical and electrical properties of the AZO films could be controlled by different growth conditions. When the sputtering pressure of the under-layer AZO film was 0.2 Pa, the discharge voltage was around 80 V, which was within the optimal process window for obtaining AZO film with high crystallinity. The optimal under-layer AZO film had a large surface roughness and a very low static water contact angle of 75.71°, promoting the relatively uniform distribution of PS spheres. Under this sputtering condition, the prepared AZO/PS/AZO tri-layer film had the highest crystallinity and least point defects. The highest carrier concentration and Hall mobility are 3.0 × 1021 cm-3and 5.39 cm2 V-1 s-1, respectively. Additionally, a transparent conductive film with the lowest resistivity value (3.88 × 10-4 Ω cm) and the highest average haze value (26.5%) was obtained by optimizing the process parameters. These properties were comparable to or exceed the reported values of surface-textured SnO2-based as well as ZnO-based TCOs films, making our films suitable for transparent electrode applications, especially in thin-film solar cells.  相似文献   

4.
《Ceramics International》2023,49(4):5905-5914
Utilization of highly conductive metal-oxide (MO) film such as indium-tin-oxide (ITO) in a channel layer has been considered as a promising strategy to realize high-mobility thin-film transistors (TFTs). However, achieving high-mobility is typically restricted by severe negative threshold voltage (Vth) shift and large off-current which are consequences of channel thickness increment. Here, to realize high-mobility MO TFTs with low Vth and off-current level, a heterogeneous ITO/amorphous indium-gallium-zinc-oxide (a-IGZO) channel structure was implemented. In the channel, the ultrathin (4 nm) ITO layer contributes to retain high electron concentration and boost the mobility, while the overlayered a-IGZO layer mitigates Vth shift and off-current increase. The ITO/a-IGZO TFTs optimized via the thickness-dependent carrier concentration of ITO and band alignment manipulation in the bilayer considerably improved the device performance showing saturation field-effect mobility of >61 cm2/V·s (average of 58.2 ± 2 cm2/V·s), subthreshold slope of <120 mV/decade (average of 129 ± 12 mV/decade), and current on/off ratio of >5 × 1010. Various electrical characterization and technological computer-aided design simulation were performed to establish a plausible mechanism explaining enhanced mobility and Vth regulation in the ITO/a-IGZO TFTs. Additionally, systematic stability tests and spectroscopic analysis were carried out to evaluate the operational stability of the device, and it is suggested that Sn ion diffusing from ITO to the heterogeneous interface can be responsible for enhanced stability by reducing the oxygen vacancy defects.  相似文献   

5.
Element doping into the Cu2ZnSn(S,Se)4 (CZTSSe) absorber is an effective method to optimize the performance of thin film solar cells. In this study, the Cu2InxZn1-xSn(S,Se)4 (CIZTSSe) precursor film was deposited by magnetron cosputtering technique using indium (In) and quaternary Cu2ZnSnS4 (CZTS) as targets. Meanwhile, the In content was controlled using the direct current (DC) power on In target (PIn). A single kesterite CIZTSSe alloy was formed by successfully doping a small number of In3+ into the main lattice of CZTSSe. The partial Zn2+ cations were substituted by In3+ ions, resulting in improving properties of CZTSSe films. Morphological analysis showed that large grain CIZTSSe films could be obtained by doping In. The well-distributed, smooth, and dense film was obtained when the PIn was 30 W. The band gap of CIZTSSe could be continuously adjusted from 1.27 to 1.05 eV as PIn increased from 0 to 40 W. In addition, the CIZTSSe alloy thin film at PIn = 30 W exhibited the best p-type conductivity with Hall mobility of 6.87 cm2V?1s?1, which is a potential material as the absorption layer of high-performance solar cells.  相似文献   

6.
Thin films of carbon have been grown on alumina substrates by the pyrolysis of camphor at 900 °C for 2 h in an argon atmosphere, followed by sintering for various time periods. The effect of sintering time on the surface morphology, conductivity, carrier concentration, mobility and bandgap of camphor-pyrolyzed films is discussed. Structural characterizations are performed on the basis of XRD and SEM analyses. Electrical conductivity measurements of these films, as a function of temperature, suggest them to be semiconductors. A Hall-effect study of the as-grown films shows their carrier concentrations to be of the order of 1017 cm−3. The Hall mobilities of these films are found to vary from 1702 to 10263 cm2 V−1 s−1. The thermal bandgaps of these films are found to decrease with increasing of sintering time. Thus, by controlled sintering of camphor-pyrolyzed carbon films, it is possible to obtained a semiconductor with the desired bandgap. Therefore, camphor-pyrolyzed semiconducting carbon films seem to be a promising material with which to develop a photovoltaic solar cell.  相似文献   

7.
《Ceramics International》2017,43(7):5574-5578
The effects of yttrium (Y) additions (x=0, 0.05, 0.1, and 0.2) on the microstructure, chemical structure, and electrical properties of YxInSnOy (YITO) thin films, prepared using a sol-gel process were examined. The transmission electron microscopy (TEM) observations showed that the undoped InSnO (ITO) film consisted of an amorphous structure with local crystalline domains on the film surface, whereas the Y additions (x=0.05, 0.1, and 0.2) to ITO suppressed the formation of the crystalline phase. X-ray photoelectron spectroscopy (XPS) analysis showed that the Y content decreased the concentration of oxygen vacancies owing to the strong incorporation of Y with oxygen. As a result of the Y incorporation, the carrier concentration of ITO films decreased. The saturation mobility (μsat), the on-off ratios (Ion/off), and the sub-threshold swing (S.S) of YITO films were 1.1 cm2 V−1 s−1, ~106, and ~0.5 V decade−1, respectively, which are comparable with 1.7 cm2 V−1 s−1, ~105, and ~1.17 V decade−1 of ITO film. Additionally, the initial threshold voltage (VTH) was positive shift with increased of Y addition and VTH shift (ΔVTH) under the positive bias stress (PBS) results decreased by Y addition.  相似文献   

8.
Tungsten‐doped SnO2 (WTO) thin films with a given thickness of about 300 nm have been prepared by magnetron sputtering with a substrate temperature in the range 400°C–700°C. The effects of substrate temperature on the structural, optical, and electrical properties and of WTO thin films have been investigated. A texture transition from (1 1 0) to (2 1 1) crystallographic orientations has experimentally been found by X‐ray diffraction measurements as substrate temperature is raised. It was found that all thin films showed smooth surface with no cracks and high transparency (>85%) with the optical band gap ranging from 4.22 to 4.32 eV. The mobility varied from 12.89 to 22.48 cm2·(V·s)?1 without reducing the achieved high carrier concentration of about 1.6 × 1020 cm?3. Such an increase in mobility is shown to be clearly associated with the development of (2 0 0) but concurrent degradation of (1 1 0) in WTO thin films.  相似文献   

9.
《Ceramics International》2022,48(7):9817-9823
Electrical and optical properties of In-Ga-Sn-O (IGTO) thin films deposited by radio-frequency magnetron sputtering were investigated according to annealing temperatures. While IGTO films remained an amorphous phase even after a heat treatment at temperature up to 500 °C, Hall measurements showed that annealing temperature had a significant impact on electrical properties of IGTO thin films. After investigating a wide range of annealing temperatures for samples from as-deposited state to 500 °C, IGTO film annealed at 200 °C exhibited the best electrical performance with a conductivity of 229.31 Ω?1cm?1, a Hall mobility of 36.89 cm2V?1s?1, and a carrier concentration of 3.85 × 1019 cm?3. Changes in proportions of oxygen-related defects and percentages of Sn2+ and Sn4+ ions within IGTO films according to annealing temperatures were analyzed with X-ray photoelectron spectroscopy to determine the cause of the superb performance of IGTO at a low temperature. In IGTO films annealed at 200 °C, Sn4+ ions acting as donor defects accounted for a high percentage, whereas hydroxyl groups working as electron traps showed a significantly reduced percentage compared to the as-deposited film. Optical band gaps of IGTO films obtained from UV–visible spectrum were 3.38–3.47 eV. The largest band gap value of 3.47 eV for the IGTO film annealed at 200 °C could be attributed to an increase in Fermi-level due to an increase of carrier concentration in the conduction band. These spectroscopic results well matched with electrical properties of IGTO films according to annealing temperatures. Excellent electrical properties of IGTO thin films annealed at 200 °C could be largely due to Sn donors besides oxygen vacancies, resulting in a significant increase in free carriers despite a low annealing. temperature.  相似文献   

10.
Reduced graphene oxide nanosheets modified by conductive polymers including polythiophene (GPTh), polyaniline (GPANI) and polypyrrole (GPPy) were prepared using the graphene oxide as both substrate and chemical oxidant. UV–visible and Raman analyses confirmed that the graphene oxide simultaneously produced the reduced graphene oxide and polymerized the conjugated polymers. The prepared nanostructures were subsequently electrospun in mixing with poly(3‐hexylthiophene) (P3HT)/phenyl‐C71‐butyric acid methyl ester (PC71BM) and poly[bis(triisopropylsilylethynyl)benzodithiophene‐bis(decyltetradecylthien)naphthobisthiadiazole] (PBDT‐TIPS‐DTNT‐DT)/PC71BM components and embedded in the active layers of photovoltaic devices to improve the charge mobility and efficiency. The GPTh/PBDT‐TIPS‐DTNT‐DT/PC71BM devices demonstrated better photovoltaic features (Jsc = 11.72 mA cm?2, FF = 61%, Voc = 0.68 V, PCE = 4.86%, μh = 8.7 × 10?3 cm2 V–1 s?1 and μe = 1.3 × 10?2 cm2 V–1 s?1) than the GPPy/PBDT‐TIPS‐DTNT‐DT/PC71BM (Jsc = 10.30 mA cm?2, FF = 60%, Voc = 0.66 V, PCE = 4.08%, μh = 1.4 × 10?3 cm2 V–1 s?1 and μe = 8.9 × 10?3 cm2 V–1 s?1) and GPANI/PBDT‐TIPS‐DTNT‐DT/PC71BM (Jsc = 10.48 mA cm?2, FF = 59%, Voc = 0.65 V, PCE = 4.02%, μh = 8.6 × 10?4 cm2 V–1 s?1 and μe = 7.8 × 10?3 cm2 V–1 s?1) systems, assigned to the greater compatibility of PTh in the nano‐hybrids and the thiophenic conjugated polymers in the bulk of the nanofibers and active thin films. Furthermore, the PBDT‐TIPS‐DTNT‐DT polymer chains (3.35%–5.04%) acted better than the P3HT chains (2.01%–3.76%) because of more complicated conductive structures. © 2019 Society of Chemical Industry  相似文献   

11.
In order to observe the effects of the substitution of electronegative flourine with aromatic groups in oligo(p ‐phenylenevinylene) compounds on their packing, morphology, and charge carrier mobility, we have synthesized napthol‐substituted oligo(p ‐phenylenevinylene) compounds and examined their solubility, redox properties, thin film morphologies, and charge carrier properties. To date, very few examples of conjugated oligomers bearing napthol side groups have been reported in the literature. After annealing at 150 °C, the mobility of S1, S2, and S3 was 4.0 × 10?2 cm2 V?1 s?1, 1.2 × 10?2 cm2 V?1 s?1, and 2.6 × 10?3 cm2 V?1 s?1, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44825.  相似文献   

12.
《Ceramics International》2020,46(8):11898-11904
Nanomaterials with ultraviolet/near-infrared (UV/NIR) shielding property have great potential for developing energy-saving windows. In this work, we report low-cost W18O49 nanorods as UV/NIR shielding material. W18O49 nanorods with the length of ~20 or ~60 nm were prepared by simple solvothermal method, and they exhibited strong size-dependent absorption in the UV/NIR region. By mixing W18O49 nanorods with polydimethylsiloxane (PDMS), W18O49@PDMS films were constructed and they could shield 55.58% of UV and 75.89% of NIR light while transmit 58.03% of visible light. A sealed box with W18O49@PDMS-coated glass as the window exhibited a minimal temperature elevation (△T = 9.2 °C) compared to those coated with pure glass (△T = 18.2 °C) or ITO glass (△T = 12.1 °C), under the irradiation of solar light (0.6 W cm−2). Additionally, the films had a contact angle of 122 ± 2°, showing self-cleaning ability. Therefore, W18O49@PDMS films can act as cost-efficient UV/NIR-shielding and self-cleaning film.  相似文献   

13.
《Ceramics International》2016,42(13):14543-14547
Cu(In1−xGax)Se2 (CIGS) thin films were prepared by RF magnetron sputtering from a single quaternary target at multiple processing parameters. The structural, compositional, and electrical properties of the as-deposited films were systematically investigated by XRD, Raman, SEM, and Hall effects analysis. The results demonstrate that by adjusting the processing parameters, the CIGS thin films with a preferential orientation along the (112) direction which exhibited single chalcopyrite phase were obtained. The films deposited at relatively higher substrate temperature, sputtering power, and Ar pressure exhibited favorable stoichiometric ratio (Cu/(In+Ga):0.8–0.9 and Ga/(In+Ga):0.25–0.36) with grain size of about 1–1.5 µm, and desirable electrical properties with p-type carrier concentration of 1016−1017 cm−3 and carrier mobility of 10–60 cm2/Vs. The CIGS layers are expected to fabricate high efficiency thin film solar cells.  相似文献   

14.
We report the synthesis of large-area graphene films on Mo foils by chemical vapor deposition. X-ray diffraction indicates that the dissolution and segregation process governs the growth of graphene on Mo foils. Among all processing parameters investigated, the cooling rate is the key one to precisely control the thickness of graphene film. By optimizing the cooling rate between 1.5 and 10 °C/s, we managed to achieve graphene films ranging from mono- to tri-layer. Their uniformity and thickness were confirmed by Raman spectroscopy and optical measurements. The carrier mobility of films reaches as high as 193 cm2 V?1 s?1. Our experiments show that the Mo substrate has the similar simplicity and large tolerance to processing conditions as Cu.  相似文献   

15.
《Ceramics International》2017,43(11):8391-8395
Titanium dioxide (TiO2) films doped with different indium (In) concentrations have been prepared on SrTiO3 (STO) substrates by high vacuum metalorganic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) analyses revealed the TiO2 films doped with low In concentrations to be [001] oriented anatase phase and the films with high In concentrations to present polycrystalline structures. The 1.8% In-doped TiO2 film exhibited the best electrical conductivity properties with the lowest resistivity of 8.68×10−2 Ω cm, a Hall mobility of 10.9 cm2 V−1 s−1 and a carrier concentration of 6.5×1018 cm−3. The films showed excellent transparency with average transmittances of over 85% in the visible range.  相似文献   

16.
《Ceramics International》2022,48(14):20194-20200
In this paper, TCO (Transparent Conductive Oxide) incorporating ultrathin Ag intermediate film is proposed as a new buffer layer to enhance the efficiency of CIGS thin-film solar cells (TFSCs). In this regard, versatile multilayer thin-films based on ZnO/Ag/ZnO and ITO/Ag/ITO structures were deposited on glass using RF magnetron sputtering technique to determine the optoelectronic parameters of the multilayer structures. The elaborated samples were then characterized using SEM, EDS, XRD, and UV–Visible absorption spectroscopy techniques to investigate the structure morphological, optical, and electronic properties. The deposited multilayer thin-films showed amorphous-like structure and exhibited a broadband absorbance over the visible and even NIR spectrum ranges, indicating its potential application as alternative buffer layers for thin-film solar cells. In this context, TCO/Ag/TCO/CIGS solar cells have been numerically investigated using the deposited multilayer optoelectronic properties. It was revealed that the estimated efficiency of the ZnO/Ag/ZnO/CIGS-based solar cell could reach 18.5% with an open circuit voltage of 0.7 V and a short-circuit current density of 34.8 mA/cm2. The performances exhibited by the investigated solar cell demonstrated that ZnO/Ag/ZnO multilayer can be used as an alternative to the conventional CdS buffer layer for developing high-performance non-toxic CIGS solar cells.  相似文献   

17.
Step voltage transient current studies have been made in cellulose acetate films as a function of filed and thickness. A logarithmic plot (Scherr-Montroll plot) of the transient current vs. time gives a knee at a time tT, which is interpreted as the transit time of the charge carrier. The value of the carrier mobility has been estimated to be 3.9 × 10?9 cm2.V?1.S?1 in cellulose acetate film. The carrier mobility in iodine-doped (2% w/w) cellulose acetate film has also been determined from Scher-Montroll plot and is found to be 3.3 × 10?7 cm2.V?1.S?1.  相似文献   

18.
《Ceramics International》2022,48(9):12317-12323
Transparent conductive oxide (TCO) films have important applications in many areas. Unfortunately, TCOs are usually fabricated using vacuum and high-temperature methods, preventing them from applications in low-cost flexible devices. In this paper, facile low-temperature sol-gel method is described that can be used to fabricate high-quality TCO films. This study uses lightwave (LW) irradiation (at ~280 °C) with indium-tin-oxide (ITO) as a typical example. Both structure and key properties of ITO films are investigated for different LW irradiation conditions. ITO can be formed via LW irradiation after a period as short as 5 min. Furthermore, it is found that LW irradiation can promote the formation of M ? O framework, effectively remove Cl impurities, and facilitate the elimination of hydroxyl oxygen defects - even at temperatures as low as ~280 °C. The optimal ITO films show excellent electronic properties, including low sheet-resistance (14.5 Ω·sq?1) and high conductivity (1.7 × 103 S cm?1). Moreover, ITO films also show high transmittance (above 87%). Overall, our ITO films have a figure of merit (FOM) of 1.72 × 10?2 Ω?1, which is comparable to (or higher than) those of previous ITO films that were produced using conventional vacuum and high-temperature methods. Our LW irradiation method provides facile and effective approach to produce high-performance TCO films at remarkably low cost. This means these films could be used in affordable flexible large-area devices.  相似文献   

19.
RF-magnetron sputtering has been carried out at room temperature to deposit vanadium-doped zinc oxide (VZO) nanostructured thin films onto flexible PEN substrates. The sputtering targets of compacted VZO nanopowder have been prepared using a rapid and inexpensive Sol-Gel synthesis followed by a supercritical drying process. Structural and morphological study of VZO particles in the targets has been carried out via X-ray diffraction and Transmission Electron Microscopy (TEM). The nanostructured thin films have been characterized to analyze the structural, morphological, electrical and optical properties as a function of vanadium content from 0 to 4 at.%. Structural characterization of VZO thin films revealed that the deposited thin films have been grown preferentially along (002) and exhibit the hexagonal wurtzite structure. The cross-sectional and microstructural analysis performed by Scanning Electron Microscopy (SEM) confirms the columnar growth of nanostructures. The deposited thin films exhibit transparent behavior with transmission >70% in the visible region. It has been observed that nanostructured thin films with vanadium content of 2% have demonstrated the lowest resistivity (6.71 × 10?4 Ω cm) with Hall mobility of 10.62 cm2 V?1 s?1. The deposited vanadium doped nanostructured thin films would have potential applications in electronic and optoelectronic devices.  相似文献   

20.
《Ceramics International》2017,43(6):4926-4929
In this study, transparent Li–N co-doped ZnSnO (ZTO: (Li, N)) thin film transistors (TFTs) with a staggered bottom-gate structure were fabricated by radio frequency magnetron sputtering at room temperature. Emphasis was placed on investigating the effects of post-annealing temperature on their physical and electrical properties. An appropriate post-annealing temperature contributes not only to achieving good quality thin films, but also to improving the electrical performance of the ZTO: (Li, N) TFTs. The ZTO: (Li, N) TFTs annealed at 675 °C showed the best electrical characteristics with a high saturation mobility of 26.8 cm2V−1s−1, a threshold voltage of 6.0 V and a large on/off current ratio of 4.5×107.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号