首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bearing capacity and failure mechanism of encased stone columns are affected by many factors such as encasement length, relative density, strength and stiffness of the encasement material. In soft soils where surrounding soil pressure is low, especially in the top section, the stone columns may be close to a uniaxial compression state, where the uniaxial compression strength controls the bearing capacity of the stone columns. A series of large-scale triaxial tests on ordinary stone columns and uniaxial tests on geotextile encased stone columns have been performed. The stone columns were 300?mm in diameter and 600?mm in height. Samples of four different relative densities, and five types of geotextiles were used in the tests to study the effect of initial void ratio and encasing materials on the uniaxial compression behavior of the stone columns. The results show the uniaxial compressive strength of the encased stone columns is not affected by the initial void ratio but mainly by the tensile strength of the encasing geotextiles. The stress strain curves of the encased stone columns under uniaxial loading condition are nearly liner before failure, which is similar to the tensile behavior of the geotextiles.  相似文献   

2.
Geosynthetic-encased stone columns: Numerical evaluation   总被引:5,自引:0,他引:5  
Stone columns (or granular piles) are increasingly being used for ground improvement, particularly for flexible structures such as road embankments, oil storage tanks, etc. When the stone columns are installed in extremely soft soils, the lateral confinement offered by the surrounding soil may not be adequate to form the stone column. Consequently, the stone columns installed in such soils will not be able to develop the required load-bearing capacity. In such soils, the required lateral confinement can be induced by encasing the stone columns with a suitable geosynthetic. The encasement, besides increasing the strength and stiffness of the stone column, prevents the lateral squeezing of stones when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the qualitative and quantitative improvement in load capacity of the stone column by encasement through a comprehensive parametric study using the finite element analysis. It is found from the analyses that the encased stone columns have much higher load carrying capacities and undergo lesser compressions and lesser lateral bulging as compared to conventional stone columns. The results have shown that the lateral confining stresses developed in the stone columns are higher with encasement. The encasement at the top portion of the stone column up to twice the diameter of the column is found to be adequate in improving its load carrying capacity. As the stiffness of the encasement increases, the lateral stresses transferred to the surrounding soil are found to decrease. This phenomenon makes the load capacity of encased columns less dependent on the strength of the surrounding soil as compared to the ordinary stone columns.  相似文献   

3.
Stone columns have been used to minimize the settlement of embankments on soft soils but their use in very soft soils can become challenging, partly because of the low confinement provided by the surrounding soil. Geosynthetic encased columns (GECs) have been successfully used to enhance to reduce settlements of embankments on soft soils. This paper describes an investigation on the performance of encased columns constructed on a very soft soil using different types of encasement (three woven geotextiles with different values of tensile stiffness) and different column fill materials (sand, gravel and recycled construction and demolition waste, RCDW). The results of load capacity tests conducted on large-scale models constructed to simulate the different types of GECs indicate that the displacement method adopted during column installation can lead to an enhanced shear strength in the smear zone that develops within the very soft soil. In addition, breakage of the column fill material was found to affect the load-settlement response of gravel and RCDW columns. Furthermore, the excess pore water pressure generated in the surrounding soil during installation, was found to remain limited to radial distances smaller than three times the GEC diameter.  相似文献   

4.
Geosynthetic-encased stone column (GESC) has been proven as an effective alternative to reinforcing soft soils. In this paper, a series of centrifuge model tests were conducted to investigate the performance of GESC-supported embankment over soft clay by varying the stiffness of encasement material. The enhancement in the performance of stone columns encased with geosynthetic materials was quantified by comparing the test with ordinary stone columns (OSCs) under identical test conditions. The test results reveal that by encasing stone columns with geosynthetic material, a significant reduction in the ground settlement, relatively faster dissipation of excess pore pressure and enhanced stress concentration ratio was noticed. Moreover, with the increase in the encasement stiffness from 450 kN/m to 3300 kN/m, the stress concentration ratio increased from 4 to 6.5, which signifies the importance of encasement stiffness. In addition, a relatively lower value of soil arching ratio observed for GESCs compared to OSCs indicate the formation of a relatively strong soil arch in the GESC-supported embankment. Interestingly, under embankment loading, GESCs fail by bending while OSCs fail by bulging. The stress reduction method can be used to calculate the settlement of GESC-supported embankment with larger stress reduction factor than that in the OSC-supported embankment. Finally, the limitation of the construction of the embankment at 1 g was addressed.  相似文献   

5.
The influence of uniaxial tensile strain on the pore size distribution and filtration characteristics of geotextiles is studied. An experimental apparatus was designed and used to conduct tests for pore size distribution, flow rate through the geotextiles and the gradient ratio. Four geotextiles made of polypropylene (two heat-bonded nonwoven and two slit film woven) were studied. Throughout the test series, the geotextiles were stretched to maintain 5%, 10% and 20% in-plane uniaxial strains. The strained specimen test results were compared with those from unstrained specimen. The experimental results illustrate the pore size and the mean flow rate through the plain geotextiles increase with the increase in tensile strain. The differences in changed percentages for apparent opening size and flow rate between the two nonwoven geotextiles are much higher than those between the two woven geotextiles. The increase in tensile strain results in reduction in the gradient ratio for the soil–geotextile system. This effect is more pronounced for nonwoven geotextiles. More testing is recommended to gain a deeper understanding into tensile strain effect on various geotextiles.  相似文献   

6.
A modified hydrodynamic sieving technique in which the geotextile is subjected to a tensile load is described. This load may be either uni-axial or bi-axial. To date tests have been conducted on two different woven slit-film polypropylene geotextiles and the results illustrate a marked change in the filtration opening size of the geotextiles as the tensile load is increased. The opening size of the thicker geotextile decreased with increasing biaxial load, whereas the opposite occurred for the thinner of the two geotextiles. The geotextiles were loaded up to only about 10% of their minimum ultimate tensile strength and the filtration opening size changed by up to 28%. It is suggested that this effect cannot be ignored in applications where there are in-plane tensile stresses.  相似文献   

7.
选用碎石、圆砾和砂3种填料,以及5种不同强度的聚丙烯土工编织布套筒,制备成15组尺寸为?300 mm×600mm,填料压实度?=0.9的土工织物散体桩,对桩体进行单轴压缩试验,以研究不同填料土工织物散体桩在轴向荷载作用下的强度特性。研究结果表明:不同填料桩体在单轴压缩下具有不同的破坏模式,碎石填料局部刺破编织布套筒形成较大破口,圆砾填料致套筒横向筋丝断裂、纵向筋丝分离,而砂填料致套筒横向筋丝断裂较均匀且无明显破口。桩体强度与筋材和填料强度均呈正相关关系,3种填料桩体轴向应力–应变曲线在加载初期因填料受到初始压密而略有上凹,而后近似线性增长至桩体强度,峰值强度后呈现应变软化现象;综合本文试验数据及前期所做的单轴、三轴压缩试验数据,修正了桩体强度理论计算公式,得到的桩体强度修正值与试验值吻合较好。  相似文献   

8.
Deformation and consolidation around encased stone columns   总被引:1,自引:0,他引:1  
A new analytical solution is presented to study soft soil improvement by means of encased stone columns to reduce both settlement and consolidation time. The proposed solution aims to be a simple and useful tool for design. Only a unit cell, i.e. an end-bearing column and its surrounding soil, is modelled in axial symmetry under a rigid and uniform load. The soft soil is treated as an elastic material and the column as an elastic-plastic material using the Mohr-Coulomb yield criterion and a non-associated flow rule, with a constant dilatancy angle. An elasto-plastic behaviour is also considered for the encasement by means of a limit tensile strength. The solution is presented in a closed form and is directly usable in a spreadsheet. Parametric studies of the settlement reduction, stress concentration and consolidation time show the efficiency of column encasement, which is mainly ruled by the encasement stiffness compared to that of the soil. Column encasement is equally useful for common area replacement ratios but columns of smaller diameters are better confined. Furthermore, the applied load should be limited to prevent the encasement from reaching its tensile strength limit. A simplified formulation of the solution is developed assuming drained condition. The results are in agreement with numerical analyses.  相似文献   

9.
竖向土工加筋体对碎石桩承载变形影响的模型试验研究   总被引:1,自引:0,他引:1  
在碎石桩桩顶一定深度内包裹竖向土工加筋体形成筋箍碎石桩,能有效提高碎石桩的承载能力,控制复合地基沉降量。采用分级加载方式,设计并完成了两组较大比例室内模型试验,对比分析了筋箍碎石桩和传统碎石桩的承载变形特性,进而探讨了筋箍碎石桩的加筋机理和鼓胀变形模式,重点分析了竖向土工加筋体的应力应变特征。分析结果表明:竖向土工加筋体能有效约束碎石桩的侧向鼓胀,在微小侧向变形内提供足够的径向约束应力;筋箍碎石桩的最大鼓胀变形多发生于加筋体以下区域,其破坏模式与筋体材料、桩体、桩周土体及其相互作用和协调变形密切相关;筋箍碎石桩的桩顶和桩底桩土应力比均明显大于传统碎石桩,上部土工加筋体在提高桩体刚度的同时,可有效地将上部荷载传递至桩底较好土层。  相似文献   

10.
《Soils and Foundations》2007,47(5):873-885
Stone columns, one of the most commonly used soil improvement techniques, have been utilized worldwide to increase bearing capacity and reduce total and differential settlements of structures constructed on soft clay. Stone columns also act as vertical drains, thus speeding up the process of consolidation. However, the settlement of stabilised bed is not reduced in many situations for want of adequate lateral restraint. Encasing the stone column with a geogrid enhances the bearing capacity and reduces the settlement drastically without compromising its effect as a drain, unlike a pile. The behavior of the encased stone column stabilized bed is experimentally investigated and analysed numerically. In the numerical analysis, material behaviour is simulated using Soft Soil, Mohr Coulomb and Geogrid models for clay, stone material and encasement respectively and is validated with experimental results. The parametric study carried out on varying the L/D ratio (L = length of the column; D = diameter of the column) of column, stiffness of geogrid and angle of internal friction of stone material gives a better understanding of the physical performance of the encased stone column stabilized clay bed.  相似文献   

11.
Stone columns, which are frequently employed to stabilize the liquefiable soil, are susceptible to accumulation of soil particles. The progressive accumulation of the soil particles causes clogging of the stone column which decreases its drainage capacity. The stone column can be encased with geotextile to sustain its long term drainage function. The encasement prevents the movement of the soil particles into the stone pores. In the present paper, a mathematical model is presented to assess the filtration performance of the geotextile encasement to prevent the clogging. The filtration capacity of the geotextile is related to its maximum pore size, porosity and soil characteristics. It is observed that the encased stone column dissipates the excess pore pressure at a faster rate compared to the stone column without encasement. The peak maximum excess pore water pressure (Umax) is not significantly affected due to selection of the opening size of the geotextiles for single earthquake. However, the opening size can significantly affect the peak Umax value for multiple earthquakes. Depending on the capture coefficient of the stone column, the clogging can be fully prevented for higher hydraulic gradient if geotextile with maximum opening size in between D10 to D5 is used as encasement.  相似文献   

12.
Geosynthetics or geotextile is used for aggregate separation, soil reinforcement, filtration, drainage and moisture or liquid barriers in geotechnical applications. Because of the environmental issues, a bio-based material is introduced as a sustainable construction material. The kenaf fibre is a bio-based material available in the tropical countries. It can be potentially used as a geotextile because of its high tensile strength. This paper presents the tensile strength characteristics of kenaf geotextile, manufactured with and without sodium hydroxide (NaOH) treatment. The tensile strength of kenaf geotextile was determined by using the wide-width strip test based on the ASTM D4595-17 standard. Because the kenaf fibre has a high water absorption capability, the effect of wet and dry conditions on tensile behaviour of kenaf textile was studied. Two patterns of woven kenaf with two different opening sizes between their yarns (0 × 0 and 2 × 2 mm)—plain and incline patterns were studied. In addition, the tensile strength of the kenaf geotextiles, buried in natural ground, was examined after a one-year period. The tensile strength of kenaf geotextiles was higher for the smaller spaces between the yarns. Furthermore, the tensile strength and elongation were lower under wet condition. The alkaline treatment (6% concentration of NaOH) significantly improved the tensile strength of the woven kenaf geotextile. The tensile strength of the treated kenaf geotextile was higher than that of the untreated one, for both short and long-term conditions, showing the advantage of NaOH treatment.  相似文献   

13.
In very soft soils, the bearing capacity of stone columns may not improve significantly due to very low confinement of the surrounding soil. Therefore, they may be reinforced with geosynthetics by using vertical encasement or horizontal layers. Very limited studies exist on horizontally reinforced stone columns (HRSCs). In this research, some large body laboratory tests have been performed on horizontally reinforced stone columns with diameters of 60, 80, and 100?mm and groups of stone columns with 60?mm diameter. Results show that the bearing capacity of stone columns increases by using horizontally reinforcing layers. Also, they reduce lateral bulging of stone columns by their frictional and interlocking effects with stone column aggregates. Finally, numerical analyses were carried out to study main affecting parameters on the bearing capacity of HRSCs. Numerical analysis results show that the bearing capacity increases considerably with increasing the number of horizontal layers and decreasing space between layers.  相似文献   

14.
土工合成材料约束碎石桩作为一种新型软土地基处理技术在工程中广泛应用,其单桩承载力取决于土工合成材料抗拉强度和土的工程性质。通过对土工合成材料、碎石桩及地基土的相互作用机理进行分析,提出了考虑土工合成材料约束拉力与土体围压的桩身强度计算方法,进而推导出考虑上部荷载作用的,由桩身强度控制的单桩极限承载力计算方法,并采用MATLAB编写了计算程序,根据得出的单桩极限承载力计算了土工合成材料拉力沿深度的分布,结合一算例说明了计算所需要的参数及计算过程,成果可为土工合成材料碎石桩的设计提供计算依据。  相似文献   

15.
Geosynthetic-encased stone columns in soft clay: A numerical study   总被引:2,自引:0,他引:2  
This paper presents the findings of a series of numerical studies on the contribution of geosynthetic encasement in enhancing the performance of stone columns in very soft clay deposits. In this study, the imposed loading is from a fill embankment, and the stone columns act like reinforcements. Observed settlement of a trial embankment built on very soft clay strengthened with stone columns indicated that the stone columns alone were not adequately effective in reducing settlement because the very softy clay could not provide adequate confining stress to the stones. An alternative system utilizing geosynthetic encasement was examined numerically. As the primary issue is the development of settlement with time after the completion of stone column installation, a fully coupled analysis was performed. To reduce the computational effort, a unit cell idealization was adopted. This study showed that the use of geosynthetic encasement has the potential of significantly enhancing the effectiveness of stone columns in very soft clay and the simplified analysis presented in earlier work is valid. Furthermore, the predicted performance was found to be insensitive to assumed stiffness parameters of the compacted stone. However, it was found to be dependent on the locked-in stress in the geosynthetic encasement induced during installation.  相似文献   

16.
Granular columns have been introduced into engineering practice to improve the bearing capacity and reduce settlement of sand column in a weak or soft soil. The improvement can be enhanced by encapsulating the column with tensile resistant material. The improvement depends on the confinement offered by the surrounding soil, the reinforcing material and the granular column material. In this study, the extent of improvement for a sand column subjected to constant confining pressures is studied through laboratory experiments. A series of triaxial compression tests were carried out in laboratory to investigate the response of sand columns encapsulated by geotextiles. The tests consisted of triaxial compression tests on sand columns with two different densities and encapsulated by sleeves fabricated from three different geotextiles. The increase in deviatoric stress, the reductions in volumetric and radial strains, and the increase in confining pressure generated by the encapsulating reinforcement were measured and analyzed. The mobilized pseudo-cohesion and friction angle corresponding to various axial strains are analyzed to interpret the reinforcing effect. The experimental results are compared with data obtained from analytical method reported in the literature.  相似文献   

17.
Geosynthetic-encased stone columns: Analytical calculation model   总被引:6,自引:0,他引:6  
This paper presents a newly developed design method for non-encased and encased stone columns. The developed analytical closed-form solution is based on previous solutions, initially developed for non-encased columns and for non-dilating rigid-plastic column material. In the present method, the initial stresses in the soil/column are taken into account, with the column considered as an elasto-plastic material with constant dilatancy, the soil as an elastic material and the geosynthetic encasement as a linear-elastic material. To check the validity of the assumptions and the ability of the method to give reasonable predictions of settlements, stresses and encasement forces, comparative elasto-plastic finite element analyses have been performed. The agreement between the two methods is very good, which was the reason that the new method was used to generate a parametric study in order to investigate various parameters, such as soil/column parameters, replacement ratio, load level and geosynthetic encasement stiffness on the behaviour of the improved ground. The results of this study show the influence of key parameters and provide a basis for the rational predictions of settlement response for various encasement stiffnesses, column arrangements and load levels. The practical use of the method is illustrated through the design chart, which enables preliminary selection of column spacing and encasement stiffness to achieve the desired settlement reduction for the selected set of the soil/column parameters.  相似文献   

18.
佘巍  唐晓武 《岩土工程学报》2012,34(8):1522-1526
现有反滤设计中保土准则使用土工织物未受拉时的等效孔径,但平面单向拉伸会导致该值变化,变大则不满足保土准则,变小则不满足透水准则及淤堵准则。有纺织物孔径由孔径分布曲线和特征孔径反映,采用数字图像分析法对两种有纺土工织物单向受拉时孔径变化进行精确测定。有纺织物被单向张拉至3%,6%,9%和12%的平面应变,随着拉应变的增加,两种有纺土工织物开孔面积率增大;孔径分布曲线向孔径大的方向移动;3种特征孔径值(O30,O50和O95)增大,其变化率都与拉应变呈近似线性关系,且小孔径部分相对于大孔径部分随拉伸应变的增长而增大较快。  相似文献   

19.
Woven geotextiles are often to be used in roadways for reinforcement purposes due to their higher tensile strengths. In the design of a woven geotextile for practical applications, the focus is mainly put on its reinforcing effect, while its hydraulic behaviors are not major design parameters and the influence of hydraulic properties on the reinforcing effect is often ignored. However, woven geotextiles are predominantly made of polypropylene and polyester, which are hydrophobic. This characteristic can result in a capillary break effect which it is equivalent to raise the ground water table to the location where the geotextile is installed. Numerous researchers have reported that the moisture storage from a capillary break effect can be detrimental to the long-term performance of a pavement structure. Until now, no method is available to effectively resolve this issue.Recently a new type of wicking geotextile is produced which has the capability to laterally drain excess water in a roadway under both saturated and unsaturated conditions. Several field applications demonstrated its potential in improving pavement performance. This paper attempted to investigate the working mechanism of the wicking geotextile through numerical studies and quantify the benefits of the wicking geotextile in term of drainage performance in a pavement structure. A numerical model was developed and validated using column test results from existing literature. After that the drainage performance of the wicking geotextile under different working conditions was simulated and evaluated.  相似文献   

20.
The performance of the floating geosynthetic-encased stone column–(GESC)-supported embankments with basal reinforcement was examined using a 3-dimensional (3D) hydro-mechanical coupling finite element model. Comprehensive parametric analyses were performed on the governing factors such as consistency of substratum soil, tensile stiffness of basal reinforcement and encasement, and embankment height. The results indicated that a higher embankment load is transferred to the surrounding soil when a GESC was constructed on a weaker substratum. This causes larger increases in the settlement and lateral displacement of the GESC on the weaker substratum. The tensile strain of the basal reinforcement and hoop strain in the encasement also increases. In addition, high tensile stiffness in basal reinforcement and encasement is necessary to ensure feasible settlement reduction in a floating GESC-supported embankment with basal reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号