首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The corrosion of polycrystalline Ti3SiC2 was studied in the eutectic Li2CO3 (68 at.%) and K2CO3 (32 at.%) mixture at 650–850 °C. Ti3SiC2 exhibited better corrosion resistance at 650 °C. However, the mass loss was fast when temperature was above 700 °C. It was demonstrated that the surface chemical reaction-controlled shrinking core model could be applied to describe the relationship between the degree of the corrosion and reaction time for the corrosion of Ti3SiC2 in the 700–850 °C temperature range. The corresponding apparent activation energy was 206 kJ/mol. Corrosion resulted in roughness of specimen surface. The fracture strength of the corroded samples was evaluated by a three-point bending test. The results showed that the degradation of the fracture strength was about 25% of the original values for the corroded specimens up to 10% weight loss. The mechanism of the strength degradation was discussed based on the analysis of the microstructure and composition of the corroded sample.  相似文献   

2.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   

3.
The anodic dissolution of U and Zr metal was studied in LiCl–KCl–UCl3 and LiCl–KCl–ZrCl4, respectively, at 773 K by cyclic voltammetry and compared with their respective dissolution behaviour in blank LiCl–KCl eutectic. The anodic dissolution of U–Zr alloy in LiCl–KCl–UCl3 was also studied at 773 K to compare with the dissolution of U and Zr. The transfer coefficients evaluated by Tafel analysis and the method of Allen–Hickling for U and Zr dissolution were found to be in fair agreement with each other. U dissolution in LiCl–KCl–UCl3 and Zr dissolution LiCl–KCl–ZrCl4 were also studied by chronoamperometry and the diffusion coefficient value of U3+ was calculated to be in the range of 2.9 × 10−5 to 3.3 × 10−5 cm2 s−1 which is in agreement with those reported in literature. Convolution voltammetric analysis of Zr4+/Zr2+ redox couple in LiCl–KCl–ZrCl4 was carried out for the first time to have a comprehensive understanding of the electrode kinetics.  相似文献   

4.
Rapid sintering of Li7La3Zr1.75Nb0.25Al0.15O12 (LLZO) is reported. The selection of heating elements, the effect of powder preparation and MgO additions in rapid sintered LLZO are described. Annealing LLZO powder at 750 ºC for 2 h in argon immediately before pressing helped to minimize porosity. A 15–20 s hold at 1372 ºC was sufficient to achieve densities >97%. The total sintering schedule time for rapid sintering represents a 99.7% decrease in sintering time compared to conventional sintering. At 70 °C under a pressure of 4.12 MPa cells had a critical current density of 1020 µA/cm2.  相似文献   

5.
《Ceramics International》2023,49(13):21449-21454
Mo2Ga2C is a novel member of MAX phases, which is a family of ternary carbide/nitride with layered structure. The stability and wettability of Mo2Ga2C in molten metals are crucial for the application of Mo2Ga2C in the field of composite materials. In this work, the stability and wettability of Mo2Ga2C in three molten metals (Pb, Sn and Zn) were investigated. Mo2Ga2C was mixed with metal powders and annealed at different temperatures under vacuum. At 700 °C, Mo2Ga2C was not stable in any of the three molten metals. The decomposition of Mo2Ga2C was affected by the type of metal matrix as well as the reaction temperature. Mo2Ga2C decomposed at 550 °C in Pb, at 450 °C in Sn, or at 650 °C–750 °C in Zn. To characterized the wettability of these metals with Mo2Ga2C, the contact angle of molten metals with Mo2Ga2C at 650 °C were measured, which are 103° for Pb, 126° for Sn and 0° for Zn, respectively. Mo2Ga2C has good wettability with Zn and is not wetted by Pb and Sn.  相似文献   

6.
The interaction between Gd2Zr2O7 and molten LiCl–Li2O (2 wt%) was studied for 24–52 h at 650–710 °C in an argon atmosphere. Gd2Zr2O7 is analyzed as a promising structural material for sensors used during pyrochemical reprocessing of spent nuclear fuel and for long-term storage or final disposal of high-level nuclear wastes.The chemical stability of Gd2Zr2O7 relative to the components of the LiCl–Li2O melt was thermodynamically evaluated. The surface morphology and structure of the samples before and after the experiment were analyzed using an X-ray diffractometer and scanning electron microscopy. The formation of a new Li+-doped phase based on Gd2Zr2O7 and the Gd2O3 evolution onto the material surface was revealed by the X-ray diffraction analysis (XRD). Changes in the microstructure of the samples confirm the presence of large particles in the surface layer corresponding to the Gd2O3 phase, which is in good agreement with the XRD data. A profilometer was used to measure the roughness of the ceramics. Presumably, the thickness of the lithium-doped Gd2Zr2O7 film, which is inhomogeneously distributed over the surface of the samples, was 3 μm. Therefore, it was found that dense Gd2Zr2O7 (F) and Gd2Zr2O7 (P) ceramics can be used in LiCl–Li2O (2 wt %) as a structural material resistant to the high-temperature chemical attack.  相似文献   

7.
Immersion of energetic materials into high‐temperature molten‐salt baths, where the energetic materials decompose, is being considered as a method for their safe destruction. In the present research, behaviors of the high explosives LX‐17 (92.5 wt% 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB), 7.5 wt% KeI‐F 800 plastic binder) and LX‐04 (85 wt% octahydro‐,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX), 15 wt% Viton A plastic hbinder) were studied when these materials were immersed into molten salt baths. Pressed cylindrical samples initially 6.35 mm in diameter and length were immersed in molten salt baths, and data were taken photographically. Sample decomposition behaviors were observed for varied salt temperatures in a molten LiCl‐NaCl‐KC1 eutectic and then separately in a molten Li2CO3‐Na2CO3‐K2CO3 eutectic. Bath temperatures ranged from 650 to 750°C. General combustion behaviors such as bubble formation characteristics, gas evolution, and sample lifetimes were observed. Results indicated that sample lifetimes decreased as bath temperatures increased, and that the carbonate eutectic increased initial decomposition rates and decreased sample lifetimes relative to the chloride eutectic.  相似文献   

8.
《Ceramics International》2023,49(1):600-606
YFeO3 (YFO) thin films were deposited onto quartz substrates via sol-gel spin-coating technique and annealed at different temperature ranged between 650 and 900 °C. The impact of annealing temperature on the phase formation, microstructural, optical, photoluminescence (PL) and magnetic properties of the films were systematically investigated. X-ray diffraction analysis revealed an amorphous structure in film annealed at 650 °C and formation of hexagonal-YFO (h-YFO) phase in films annealed at 750–800 °C. The films annealed at 850–900 °C exhibited an orthorhombic-YFO (o-YFO) structure. Atomic force microscopy images of h-YFO films showed homogeneous surface with uniform particles size and shape. The particle size increased and had irregular shape in o-YFO films. The average particle size was 44 and 117 nm, while the root square roughness was 1.38 and 2.55 nm for h- and o-YFO films annealed at 750 and 850 °C, respectively. The optical band gap (Eg) was 2.53 and 2.86 eV for h- and o-YFO films annealed at 750 and 850 °C, respectively. The PL spectra of h-YFO films were red-shifted compared with that of o-YFO films. The PL emission related to near band edge was observed at 459.0 and 441.9 nm for h- and o-YFO films annealed at 750 and 850 °C, respectively. The magnetization was enhanced with the increasing of annealing temperature and has the value of 4.8 and 12.5 emu/cm3 at 5000 Oe for h- and o-YFO films annealed at 750 and 850 °C, respectively.  相似文献   

9.
《Ceramics International》2023,49(2):1791-1799
The high interfacial resistance between V2O5 cathode materials and conductive agents (molten salt and super carbon) is one of the biggest issues that hinder the development of high specific energy thermal batteries. Designing fast Li+ and e transport channels in cathode electrodes is considered as an effect method to improve electrochemical performance. Hence, a high-temperature ultrafast welding is proposed to reduce V2O5/conductive agents interfacial resistance by reconstructing the transmission channels of Li+ and e in this paper. The experimental studies reveal the optimum ultrafast welding of 700 °C for 10 s, eliminating gap resistance of cathode electrodes induced by the melt of solid molten salt and rebuilding the more plentiful Li+ and e transport channels, further reducing the contact resistance and gap resistance. Therefore, the electrodes deliver a high specific capacity of 270.69 mAh g?1 and a high specific energy of 610.60 Wh kg?1 at 0.1 A cm?2 and 500 °C with a cut-off voltage of 1.6 V. The high-temperature ultrafast welding provides guidance to build Li+ and e transport channels of other cathode materials in thermal batteries.  相似文献   

10.
High performance ultra-low temperature co-fired ceramic (ULTCC) materials were prepared from CuO- MgO- ZnO- Al2O3- B2O3- Li2O glass-ceramics. The sintering behaviors, crystalline phase evolution, microstructure and dielectric properties, as well as their compatibility with Ag and Al electrodes, were investigated. With the suitable substitution of MgO for ZnO, the dielectric properties of glass-ceramics were improved. It is mainly associated with the fine microstructure, highly crystallinity, and decrease in tetrahedral distortion in the crystal lattice. All the glasses completed the densification at 575–600 °C, and ZnB4O7 is the only crystalline phase precipitated from the glasses. Moreover, the glass-ceramic with 1 wt% MgO sintered at 575 °C for 5 h, exhibited low relative permittivity ~ 7.1 and low dielectric loss ~ 6.40 × 10?4. And the glass-ceramic with 4 wt% MgO sintered at 600 °C for 5 h, also displayed low relative permittivity ~ 7.1 and low dielectric loss ~ 5.77 × 10?4. Both two glasses have good sintering compatibility with silver and aluminum electrodes, which provided high potential for ULTCC application.  相似文献   

11.

Tantalum is widely used in hip joint replacement and knee joint repair, but its clinical application is limited due to its poor biological activity and weak ability to promote new bone formation. Ca and Mg ions are thought to be involved in bone metabolism and play an important physiological role in the angiogenesis, growth, and mineralization of bone tissue. In this work, NaTaO3 films doped with Ca2+ and Mg2+ were prepared by hydrothermal synthesis and molten salt method. The doping amounts of Ca2+ doped at 450, 550, 650 and 750 °C were 0.59, 3.44, 32.75 and 29.88 at%, and that of Mg2+ doped at 300, 350, 400, 450, 500, 550 and 650 °C were 0.62, 1.03, 1.54, 20.12, 21.38, 14.37 and 0.74 at%, respectively. Ca2+ and Mg2+ are evenly incorporated into NaTaO3 and cause the change of crystal plane spacing without any significant changes of morphologies below 550 and 400 °C respectively. XPS shows that the cations are the A-site substitution of perovskite structure (ABO3). According to the morphology and composition analysis of Ca-incorporated samples and Mg-incorporated samples, the optimal preparation temperature of them is 550?°C and 400?°C, respectively. The results show that for “550?°C-Ca” and “400?°C-Mg” the hydrophilicity is 13.9° and 96.1°, the roughness is 114.3 and 54.3?nm, the doping ion concentration of Ca and Mg is 3.44 and 1.54 at%, and the 7-day ICP results is 69.8 and 1.4?ppm, respectively. In addition, cell proliferation experiments and cell morphology related to biological activity and osteogenic properties are discussed, and it is found that the performance of “550?°C-Ca” is better than “400?°C-Mg”. Ca2+–NaTaO3 is a promising implantable material that will be extensive used in bone implants, joint replacements and dental implants.

  相似文献   

12.
《Ceramics International》2020,46(17):26705-26714
Oxide + salt composites can be used in CO2 and NOx separation membranes, where high oxide-ion conductivity is crucial to improve performance. Pursuing this goal, the stability of three different bismuth oxide-based electrolytes (Cu + V, Y and Yb-doped) against molten alkali carbonates (Li, Na, K) or nitrates (Na, K) was tested firing them in the 450–550 °C temperature range, and with endurance tests up to 100 h. A well-known ceria-based composite was used as reference (CGO - Ce0.9Gd0.1O1.95). Oxides and composites were studied by X-ray diffraction, scanning electron microscopy and impedance spectroscopy (in air, 140–650 °C temperature range). Bi2Cu0.10V0.90O5.35 easily reacts with molten salts. Bi0.75Y0.25O1.5 and Bi0.75Yb0.25O1.5 have higher stability against molten carbonates and complete stability against molten nitrates. The Y-doped oxide stability against the molten carbonates was enhanced changing the molten salt composition (Y2O3 additions) and using lower firing temperatures. Above all, composites based on Y or Yb-doped Bi2O3 with molten alkali nitrates showed impressive 6× or 3× higher electrical conductivity at 290 °C, in air (4.88 × 10−2 and 2.41 × 10−2 S cm−1, respectively) than CGO-based composites (7.72 × 10−3 S cm−1), qualifying as promising materials for NOx separation membranes.  相似文献   

13.
The electrochemical reduction of TiO2 has been carried out in a molten LiCl salt at 650 °C. The direct reduction mechanism of TiO2 in the molten LiCl was suggested by the CV experiment and the constant voltage electrolysis. TiO2 was electrochemically converted to the metallic titanium via various reaction intermediates such as LiTiO2, TiO, and Ti2O. The interrupted voltage electrolysis was demonstrated to be effective for the direct electrochemical reduction of TiO2 to achieve a high current efficiency. The surface morphology of the produced metal was investigated by SEM and TEM.  相似文献   

14.
The influence of the catalyst precursors (for Li2O and MgO) used in the preparation of Li‐doped MgO (Li/Mg = 0.1) on its surface properties (viz basicity, CO2 content and surface area) and activity/selectivity in the oxidative coupling of methane (OCM) process at 650–750 °C (CH4/O2 feed ratio = 3.0–8.0 and space velocity = 5140–20550 cm3 g−1 h−1) has been investigated. The surface and catalytic properties are found to be strongly affected by the precursor for Li2O (viz lithium nitrate, lithium ethanoate and lithium carbonate) and MgO (viz magnesium nitrate, magnesium hydroxide prepared by different methods, magnesium carbonate, magnesium oxide and magnesium ethanoate). Among the Li–MgO (Li/MgO = 0.1) catalysts, the Li–MgO catalyst prepared using lithium carbonate and magnesium hydroxide (prepared by the precipitation from magnesium sulfate by ammonia solution) and lithium ethanoate and magnesium acetate shows high surface area and basicity, respectively. The catalysts prepared using lithium ethanoate and magnesium ethanoate, and lithium nitrate and magnesium nitrate have very high and almost no CO2 contents, respectively. The catalysts prepared using lithium ethanoate or carbonate as precursor for Li2O, and magnesium carbonate or ethanoate, as precursor for MgO, showed a good and comparable performance in the OCM process. The performance of the other catalysts was inferior. No direct relationship between the basicity of Li‐doped MgO or surface area and its catalytic activity/selectivity in the OCM process was, however, observed. © 2000 Society of Chemical Industry  相似文献   

15.
16.
《Ceramics International》2016,42(13):14813-14817
Pure γ-Y2Si2O7 powders were synthesized by the solid-liquid reaction method using Y2O3 and SiO2 powders with Li2O, MgO or Al2O3 additives. The effects of the metallic ions Li+, Mg2+ and Al3+ on the synthesis process were systematically investigated by X-ray diffraction and differential scanning calorimetry. The chemical kinetics of the Y2Si2O7 synthetic process was calculated to illuminate the influences of the different metallic ions on the formation of silicate. The results indicate that the additives could effectively reduce the synthesis temperature by 100–300 °C. The apparent activation energy of the synthetic reaction was reduced by 79.75%, 65.16%, or 56.77% when 6 mol.% of Li2O, MgO, or Al2O3 was added, respectively, and the reaction rate was also significantly increased.  相似文献   

17.
To decrease the sintering temperature of MgO‐Y2O3 composites to avoid undesired grain coarsening, high reactive MgO‐Y2O3 nanopowders were synthesized via microwave combustion method. The degree of combustion was enhanced effectively by adding an extra oxidant ammonium nitrate. The as‐synthesized MgO‐Y2O3 nanopowders, ~18 nm in size, showed high specific surface area of 64.55 m2/g and low agglomeration. Relative density of 98% was obtained when sintered at a low sintering temperature of 1350°C. The high reactivity can be attributed to the lower activation energy Q (131.13 kJ/mol), compared with samples without extra oxidant (192.97 kJ/mol).  相似文献   

18.
《Ceramics International》2020,46(15):23629-23635
Cr3C2-NiCr/NiCrAlY coating was prepared by high velocity oxygen fuel (HVOF) spraying. The microstructure and the Na2SO4 hot corrosion behavior at different temperatures of the coating were investigated. The Na2SO4 hot corrosion mechanism of Cr3C2-NiCr coating was also discussed. The results showed that HVOF Cr3C2-NiCr coating was relatively dense and mainly composed of Cr3C2, NiCr and a small amount of Cr7C3 three phases. The dense Cr2O3 layer was formed on the surface of Cr3C2-NiCr coating after Na2SO4 corrosion at 750 °C to further prevent corrosion. The coating had produced the obvious longitudinal crack with the increase of hot corrosion temperature up to 900 °C. The corrosion mechanism of Cr3C2-NiCr coating against the Na2SO4 salt at high-temperature was as follows: firstly, the protective oxidizing film was formed at 750 °C, then the protective oxide film dissolved at the interface between the coating and Na2SO4 salt with the hot corrosion temperature increasing up to 900 °C, and subsequently the dissolved anions and cations could migrate to the interface between molten salt and air and the loose and unprotected oxides were regenerated, thereby exacerbating the failure of the coating.  相似文献   

19.
Garnet-type Li7La3Zr2O12 (LLZO) Li+ ion solid electrolyte is a promising candidate for next generation high-safety solid-state batteries. Ga-doped LLZO exhibits excellent Li+ ion conductivity, higher than 1 × 10?3 S cm?1. In this research, the doping amount of Ga, the calcination temperature of Ga-LLZO primary powders, the sintering conditions and the evolution of grains are explored to demonstrate the optimum parameters to obtain a highly conductive ceramics reproducibly via conventional solid-state reaction methods under ambient air sintering atmosphere. Cubic LLZO phase is obtained for Li6.4Ga0.2La3Zr2O12 powder calcined at low temperature 850 °C. In addition, ceramic pellets sintered at 1100 °C for 320 min using this powder have relative densities higher than 94% and conductivities higher than 1.2 × 10?3 S cm?1 at 25 °C.  相似文献   

20.
《Ceramics International》2021,47(22):31868-31876
Calcium-magnesium-alumina-silicate (CMAS) and molten salt corrosion pose great threats to thermal barrier coatings (TBCs), and recently, a coupling effect of CMAS and molten salt has been found to cause even severer corrosion to TBCs. In this study, the crystallization behavior of CMAS and CMAS+NaVO3 is investigated for potentially clarifying their corrosion mechanisms to TBCs. Results indicated that at 1000 °C and 1100 °C, CMAS was crystallized to form CaMgSi2O6, while at 1200 °C, the crystallization products were CaMgSi2O6, CaSiO3 and CaAl2Si2O8. The introduction of NaVO3 in CMAS reduced the crystallization ability, and as the NaVO3 content increased, glass crystallization occurred at a lower temperature, with crystallization products mainly consisting of CaAl2Si2O8 and CaMgSi2O6. At 1200 °C, CMAS+10 wt% NaVO3 was in a molten state without any crystallization, which suggested that NaVO3 addition in CMAS could reduce its melting point, indicating enhanced penetration ability in TBCs and thus increased corrosiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号