共查询到20条相似文献,搜索用时 0 毫秒
1.
S. Radhika G.R. Sabareesh G. Jagadanand V. Sugumaran 《Expert systems with applications》2010,37(1):450-455
Induction motors, which are used worldwide as the “workhorse” in industrial applications, are intermittently subjected to faults, mainly the stator faults. In this paper, fault diagnostics of induction motor using current signature analysis, with wavelet transform, is treated as a pattern classification problem. The major steps in pattern classification are feature extraction, feature selection and classification. The feature extraction is done by wavelet transforms, using different wavelets which allow the use of long time intervals where there is precise low-frequency information, and shorter regions where there is precise high-frequency information. The extracted features are classified using the new generation pattern classification technique of Support Vector Machine (SVM) identification. Then the relative capability of the different wavelets, in performing the stator winding fault identification is analyzed and the best wavelet is selected. 相似文献
2.
EEG signal classification using wavelet feature extraction and a mixture of expert model 总被引:2,自引:0,他引:2
Mixture of experts (ME) is modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME network structure for detection of epileptic seizure. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. EEG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT). Then these sub-band frequencies were used as an input to a ME network with two discrete outputs: normal and epileptic. In order to improve accuracy, the outputs of expert networks were combined according to a set of local weights called the “gating function”. The invariant transformations of the ME probability density functions include the permutations of the expert labels and the translations of the parameters in the gating functions. The performance of the proposed model was evaluated in terms of classification accuracies and the results confirmed that the proposed ME network structure has some potential in detecting epileptic seizures. The ME network structure achieved accuracy rates which were higher than that of the stand-alone neural network model. 相似文献
3.
4.
This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extracted features to classify two-class EEG signals. To demonstrate the effectiveness of the proposed method, several experiments have been conducted on three publicly available benchmark databases, one for epileptic EEG data, one for mental imagery tasks EEG data and another one for motor imagery EEG data. Our proposed approach achieves an average sensitivity, specificity and classification accuracy of 94.92%, 93.44% and 94.18%, respectively, for the epileptic EEG data; 83.98%, 84.37% and 84.17% respectively, for the motor imagery EEG data; and 64.61%, 58.77% and 61.69%, respectively, for the mental imagery tasks EEG data. The performance of the CT-LS-SVM algorithm is compared in terms of classification accuracy and execution (running) time with our previous study where simple random sampling with a least square support vector machine (SRS-LS-SVM) was employed for EEG signal classification. We also compare the proposed method with other existing methods in the literature for the three databases. The experimental results show that the proposed algorithm can produce a better classification rate than the previous reported methods and takes much less execution time compared to the SRS-LS-SVM technique. The research findings in this paper indicate that the proposed approach is very efficient for classification of two-class EEG signals. 相似文献
5.
针对基于子空间分解的人脸特征提取方法对人脸图像在采集过程中的光照、旋转、位置等变化较为敏感的问题,提出了一种改进的脉冲耦合神经网络人脸特征提取方法。该方法模拟生物视觉的感知过程,将人脸图像分解成由若干二值图像组成的认知序列,计算序列中的每幅二值图像的熵作为人脸特征,基于支持向量机实现分类与识别;同时克服了标准的脉冲耦合神经网络模型参数过多的缺点,识别率也有所改善。理论与实验结果表明,该方法与现有的基于子空间分解的人脸特征提取方法相比,对人脸图像在采集过程中的光照、旋转、位置等变化有较强的鲁棒性,而且具有较低的维数。 相似文献
6.
支持向量机和人工神经网络是人工智能方法的两个分支;详细介绍了支持向量机和人工神经网络原理。建立了网络安全评估指标体系;将支持向量机和人工神经网络同时应用于网络安全风险评估的过程中;通过实例比较了两者的评估效果;结果表明了支持向量机在小样本情况下分类正确率普遍高于人工神经网络;具有较好的分类能力和泛化能力;同时在训练时间上也有绝对的优势。实践证实了支持向量机用于网络安全风险评估的有效性和优越性。 相似文献
7.
提出一种利用小波包变换和支持向量机对手部动作的运动想象脑电信号进行分类的方法。在相关眼动辅助情况下采集想象手部动作时的C3、C4 、P3和P4通道脑电信号,用小波包变换的方法提取4种特征节律波,分别计算每种节律波能量占4种节律波能量之和的比值作为特征,然后将16维特征向量输入支持向量机分类器进行手部动作分类。对上翻、下翻、展拳、握拳4种手部动作的分类实验中平均识别率为82。3%,表明眼动辅助能有效提高运动想象脑电信号可分性。 相似文献
8.
9.
现有算法对交通标志进行识别时,存在训练时间短但识别率低,或识别率高但训练时间长的问题。为此,综合批量归一化(BN)方法、逐层贪婪预训练(GLP)方法,以及把分类器换成支持向量机(SVM)这三种方法对卷积神经网络(CNN)结构进行优化,提出基于优化CNN结构的交通标志识别算法。其中:BN方法可以用来改变中间层的数据分布情况,把卷积层输出数据归一化为均值为0、方差为1,从而提高训练收敛速度,减少训练时间;GLP方法则是先训练第一层卷积网络,训练完把参数保留,继续训练第二层,保留参数,直到把所有卷积层训练完毕,这样可以有效提高卷积网络识别率;SVM分类器只专注于那些分类错误的样本,对已经分类正确的样本不再处理,从而提高了训练速度。使用德国交通标志识别数据库进行训练和识别,新算法的训练时间相对于传统CNN训练时间减少了20.67%,其识别率达到了98.24%。所提算法通过对传统CNN结构进行优化,极大地缩短了训练时间,并具有较高的识别率。 相似文献
10.
该文提出一种多层grams特征抽取方法来提升基于在线支持向量模型的垃圾邮件过滤器。基于在线支持向量机模型的垃圾邮件过滤器在大规模垃圾邮件数据集已取得了很好的过滤效果,但与逻辑回归模型相比,计算性能的耗时是巨大的,很难被工业界所运用。该文提出的多层grams特征抽取方法能够有效减少特征数,抽取更精准有效的特征,大幅降低模型的运行时间,同时提升过滤器的过滤效果。实验表明,该方法使得在线支持向量机模型的运行时间从10337s减少到3784s,同时模型(1-ROCA)%降低了一半。 相似文献
11.
解决说话人识别问题具有重要的理论价值和深远的实用意义,本文在研究支持向量机理论的基础上,采用支持向量机的分类算法实现说话人识别系统的训练和测试,并将小波去噪技术应用于说话人识别的预处理过程中,改善进入说话人识别系统的语音质量。实验表明,在说话人识别系统中,支持向量机结合小波去噪可以获得较好的识别率。 相似文献
12.
13.
针对不平衡图像分类中少数类查全率低、分类结果总代价高,以及人工提取特征主观性强而且费时费力的问题,提出了一种基于Triplet-sampling的卷积神经网络(Triplet-sampling CNN)和代价敏感支持向量机(CSSVM)的不平衡图像分类方法——Triplet-CSSVM。该方法将分类过程分为特征学习和代价敏感分类两部分。首先,利用误差公式为三元损失函数的卷积神经网络端对端地学习将图像映射到欧几里得空间的编码方法;然后,结合采样方法重构数据集,使其分布平衡化;最后,使用CSSVM分类算法给不同类别赋以不同的代价因子,获得最佳代价最小的分类结果。在深度学习框架Caffe上使用人像数据集FaceScrub进行实验。实验结果表明,所提方法在1∶3的不平衡率下,与VGGNet-SVM方法相比,少数类的精确率提高了31个百分点,召回率提高了71个百分点。 相似文献
14.
15.
支持向量机在脑电信号分类中的应用 总被引:6,自引:0,他引:6
首先采用小波变换提取精神分裂症与健康人的脑电信号频率和空间的能量特征,然后用基于统计学习理论的支持向量机(SVM)分类器进行训练和分类测试,并比较了不同核函数和参数对脑电信号分类正确率的影响,最后与RBF神经网络的分类能力进行了实验比较。试验结果表明,利用基于支持向量机和能量特征的方法实现对脑电信号的分类可以取得理想的效果,精神分裂症患者和健康人的16导脑电信号在能量特征上表现出较高的模式可分性。这种分类方法在精神分裂症患者的病理诊断中具有一定的应用价值。 相似文献
16.
人脸的主要特征是曲线信息,提出了一种基于Curvelet变换的人脸识别算法。Curvelet变换在表达图像的曲线奇异性时,比小波变换和脊波变换能获得更稀疏的图像表示。在人脸识别中,用人脸的曲波系数来提取特征能更好地反映人脸的主要特征,文中使用支持向量机进行了识别。结果表明该方法比小波方法更有效。 相似文献
17.
18.
19.
冼广铭 《计算机工程与应用》2008,44(18):36-38
针对目前使用的SVM核函数在回归中不能逼近任意目标函数的问题,在支持向量机的核方法和小波框架理论的基础上,提出了LS-WSVM结构模型。该模型在LS-SVM中使用一种新的由小波构成的SVM核函数。实验结果表明,与标准的SVM及LS-SVM比较起来,在同等条件下,LS-WSVM在函数回归方面LS-WSVM具有优良的逼近性能,拟合效果更为细腻。 相似文献
20.
Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines 总被引:2,自引:0,他引:2
The electroencephalogram (EEG) has proven a valuable tool in the study and detection of epilepsy. This paper investigates for the first time the use of Permutation Entropy (PE) as a feature for automated epileptic seizure detection. A Support Vector Machine (SVM) is used to classify segments of normal and epileptic EEG based on PE values. The proposed system utilizes the fact that the EEG during epileptic seizures is characterized by lower PE than normal EEG. It is shown that average sensitivity of 94.38% and average specificity of 93.23% is obtained by using PE as a feature to characterize epileptic and seizure-free EEG, while 100% sensitivity and specificity were also obtained in single-trial classifications. 相似文献