首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
The effects of Ag layers with different locations and thicknesses on the structural and magnetic property of SiO2/FePt multilayer films were investigated.The non-magnetic Ag layer plays an important role in inducing(001) orientation and ordering of FePt grains,as well as the SiO2-doping reducing the grain size and the magnetic exchange coupling between grains.When the 10 nm Ag layer is moved from the bottom to the top of the SiO2/FePt multilayer film,the coercivity gradually decreases;the largest difference between the out-of-plane coercivity and the in-plane one is obtained in the sample of [SiO2(2 nm)/FePt(3 nm)]3/Ag(10 nm)/[SiO2(2 nm)/FePt(3 nm)]2.Furthermore,the location of Ag layers was fixed and the thickness was changed.The XRD curves suggest that the intensity of the(001) peak becomes the strongest with the addition of 10 nm Ag layers.  相似文献   

2.
[FePt/Ag]n multilayers were deposited on glass substrates by RF magnetron sputtering and ex situ annealed at 550℃ for 30 min. The effects of inserted Ag layer thickness and the number of bilayer repetitions (n) on the structure and magnetic properties of the multilayers were investigated. It was found that the difference between in-plane and out-of-plane coercivities varied with an increase of inserted Ag layer thickness in the [FePt 2 nm/Ag x nm]10 multilayers. The ratio of out-of-plane coercivity to in-plane coercivity reached the maximum value with the Ag layer thickness of 5 nm, indicating that the Ag layer thickness plays an important role in obtaining perpendicular orientation. For the [FePt 2 nm/Ag 5 um]n multilayers, perpendicular orientation is also influenced by n. The maximum value of the ratio of out-of-plane coercivity to in-plane coercivity appeared when n was given as 8. It was found that the [FePt 2 nm/Ag 5 nm]8 had a high perpendicular coercivity of 520 kA/m and a low in-plane one of 88 kA/m, which shows a strong perpendicular anisotropy.  相似文献   

3.
(FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constant Ku of the order of 106 J/m3 were formed. A thick Ag layer is found to be favorable for decreasing the dispersion of the easy axis for magnetization. The measurement of time decay of magnetization gave rise to a small activation volume of the order of 10-25m3, showing the promising of being the recording medium for future high density perpendicular recording.  相似文献   

4.
Ag/[BN/CoPt]5/Ag and [BN/Ag/CoPt]5/Ag thin films were deposited on glass substrates by magnetron sputtering and then annealed in vacuum at 600 ℃ for 30 min.The structures and magnetic properties of CoPt/BN multilayer films were investigated as a function of Ag layer thickness.It was found that the face-centered tetragonal (fct) (001) texture of CoPt was improved greatly by introducing the Ag toplayer or sublayer together with an Ag underlayer.Good (001)-oriented growth,low intergrain interactions as well as...  相似文献   

5.
An Si(001)/SiO2/Ti/Pt/Fe/Cu multilayer was prepared by direct-current magnetic sputtering system. The phase composition of the film was characterized by X-ray diffractometry(XRD), and the microstructure was observed by scanning electronic microscopy(SEM). Through the film annealed in magnetic field perpendicular to the surface of the film, FCC FePt film with (001) texture was obtained. And the density of the particle in the film annealed without magnetic field is very small compared with that in the film annealed with magnetic field. And the effect of magnetic field annealing on the microstructure of Fe/Pt film and the segregation ofFCC FePt phase were also discussed.  相似文献   

6.
The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after theas-deposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350 ℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.  相似文献   

7.
The highly (1301) oriented triple system of [CoPt/C]n/Ag films was deposited on glass substrates by DC and RF magnetron sputtering. After annealing at 600℃ for 30 min, thin films become magnetically hard with coercivities in the range of 160-875 kA/m because of high anisotropy associated with the L10 ordered phase. C doping plays an important role in improving (001) texture and reducing the intergrain interactions. The oriented growth of CoPt films was influenced strongly by the number of repetitions (n) of CoPt/C. By controlling the C content and the number of repetitions (n) of CoPt/C, nearly perfect (001) orientation can be obtained in the [CoPt3nm/C3nm]5/Ag50 nm.  相似文献   

8.
Anisotropic Pr–Fe–B films with soft-magnetic layer(Fe) and/or antiferromagnetic layer(Mn, Fe Mn or Mn O) were prepared by direct-current(DC) magnetron sputtering on Si(100) substrates heated at 650 °C. The influence of four types' different structures on the magnetic properties of Pr–Fe–B films was investigated.The phase and magnetic properties were characterized by means of X-ray diffraction(XRD) and superconducting quantum interference device(SQUID). Addition of antiferromagnetic layer enhances both the coercivity and the remanence ratios of Pr–Fe–B films with suitable structures. The interface number increases and the antiferromagnetic–ferromagnetic exchange interaction is likely to become stronger, which affect the improvement of magnetic properties. To further understand the influence of structures with soft-magnetic Fe layer and/or antiferromagnetic Fe Mn layer on the magnetic properties of Pr–Fe–B hard-magnetic films, the thickness of Pr–Fe–B layer was designed to decrease from 600 to 50 nm. The improvement of magnetic properties becomes obvious in Mo(50 nm)/Pr–Fe–B(25 nm)Mo(2 nm)Fe Mn(20 nm)Mo(2 nm)Pr–Fe–B(25 nm)/Mo(50 nm) film.  相似文献   

9.
In order to investigate the morphology change of Ag nano-particles/island film with the sputtering time and annealing temperature,Ag nano-particles/island films were sputtered on the silicon wafers by radio-frequency(RF)magnetron sputtering.Ag nano-particles/islands films were sputtered on Si wafer with different time.After sputtering,the samples with Ag nano-particles/islands films were annealed at 100,200 and 400 o C for 1 h,respectively.Raman spectrum was employed to examine the phase stability of Ag particles/island film after annealed at 400 o C for 1h.The result showed that the Raman spectrum peak of Ag particles/island film with annealed at 400 o C was similar to that of pure Ag.Scanning electron microscope(SEM)was used to test the microstructures and morphology of the films with different condition.To further study the morphology change,atomic force microscope(AFM)was used to test surface morphology of the Ag particles/islands films.The SEM and AFM results showed that the morphology of Ag nano-particles/island films were different with the increasing sputtering time.Ag particles went through a dramatic change on the Si wafer surface,when sputtering time changed from 3 to 60 s,Ag particles diffused and agglomerated with the annealing temperature increasing.  相似文献   

10.
T.He  B.Zhao  Y.Gao  F.Zeng  F.Pan 《金属学报(英文版)》2003,16(3):237-240
The Fe/Mo multilayers were prepared by electron beam evaporation, the micro structure and magnetic properties of the multilayers were studied by X-ray diffraction, vibrating-sample magnetometer (VSM) et al. The experimental results revealed that the Fe/Mo multilayers in our experimental conditions behaved magnetoresistance effect with a sharp peak on magnetoresistance (MR) ratio curve, and magnetoresistance is easily saturated at low applied magnetic fields. For [Fe(1.5nm)/Mo(1.0nm)]4,2 multilayers, MR ratio could arrive to 0.1%. The antiferromagnetic interlayer coupling could be observed in some films at room temperature. The strength of the antiferromagnetic interlayer coupling J in the films is low because of the low saturation field Hs. The relationship between magnetic properties and micro structure was also discussed in this paper.  相似文献   

11.
在室温下,应用对靶直流磁控溅射设备在普通玻璃基片上制备了FePt(30nm)/Ti(tnm)颗粒膜样品,随后,在真空中进行了原位退火.详细研究了Ti衬底层对FePt颗粒膜的微结构和磁特性的影响.X射线衍射图谱表明样品形成了较有序的L10织构,Ti和FePt形成了三元FePtTi合金.当Ti层厚度t=5 nm、退火温度Ta=500℃时,样品具有高度有序的L10织构、小的颗粒尺寸和优异的磁特性.矫顽力超过了6.7 kOe,饱和磁化强度为620emu/cc.并且具有较小的开关场分布.结果表明FePt/Ti颗粒膜系统可作为超高密度磁记录介质的候选者.  相似文献   

12.
在室温下,应用对靶直流磁控溅射设备在普通玻璃基片上制备了FePt(30nm)/Ti(tnm)颗粒膜样品,随后,在真空中进行了原位退火.详细研究了Ti衬底层对FePt颗粒膜的微结构和磁特性的影响.X射线衍射图谱表明样品形成了较有序的L10织构,Ti和FePt形成了三元FePtTi合金.当Ti层厚度t=5 nm、退火温度Ta=500℃时,样品具有高度有序的L10织构、小的颗粒尺寸和优异的磁特性.矫顽力超过了6.7 kOe,饱和磁化强度为620emu/cc.并且具有较小的开关场分布.结果表明FePt/Ti颗粒膜系统可作为超高密度磁记录介质的候选者.  相似文献   

13.
1 INTRODUCTIONMany works have been done in recent years onCo based granular alloys for potential applicationsas recording magnetic media[1 5]. The ideal granu lar media should consist of small and uniformgrains. High anisotropy magnetic grains embeddedin a robust non magnetic matrix are required. Highcoercivity, large squareness and negative nuclea tion field are very important for magnetic recordingfilms.The addition of Pt to the recording layer canincrease the anisotrop…  相似文献   

14.
L1_0有序FePt合金由于其极大的磁晶各向异性常数而成为下一代超高密度磁记录的候选材料,如何制备具有L1_0有序FePt薄膜成为近年来的研究热点。介绍了制备具有L1_0有序FePt薄膜的方法,包括选择合适的基底材料、单原子层沉积多层膜结构、引入下底层或中间层、添加合金元素或第三组元等,并阐述了这几种方法的主要特点和存在的问题,展望了今后FePt薄膜的发展方向。  相似文献   

15.
Effects of Cu underlayer on the structure of Fe50 Mn50 films were studied. Samples with a structure of Fe50 Mn50 (200 nm)/Cu(tcu) were prepared by rnagnetron sputtering on thermally oxidized silicon substrates at room temperature. The thickness of Cu underlayer varied from 0 to 60 nm in the intervals of 10 nm. High-vacuum annealing treatments, at different temperatures of 200, 300 and 400℃ for 1 h, respectively, on the Fe50Mn50 (200 nm)/Cu(20 nm) thin films were performed. The surface morphologies and textures of the samples were measured by field emission scan electronic microscope (FE-SEM) and X-ray diffraction(XRD). Energy dispersive X-ray spectroscopy (EDX) and Auger electron spectroscopy(AES) were used to analyze the compositional distribution. It is found that Cu underlayer has an obvious induce effect on (111) orientation of Fe50 Mn50 thin films. The induce effects of Cu on (111) orientation of Fe50 Mn50 changed with the increase of Cu layer thickness and the best effect was obtained at the Cu layer thickness of 20 nm. High-vacuum annealing treatments cause the migration of Mn atoms towards surface of the film and interface between Cu layer and substrate. With the increasing annealing temperature, migration of Mn atoms is more obvious, which leads to a Fe-riched Fe-Mn alloy film.  相似文献   

16.
Owing to the epitaxial inducement of Au atom,Au interlayer was introduced to increase the perpendicular anisotropy and the coercivity in L1_0-FePt nanocomposite film.Micromagnetics can be used to reveal the relationship between microstructure and magnetic properties of materials,and give the information of the perpendicular anisotropy and coercivity.In this work,the effect of the Au interlayer on annealed[Fe(0.5 nm)/Pt(0.5 nm)/Au(d nm)]_(10) nanocomposite recording medium by a micromagnetic model was studied.The model contains three phases:hard magnetic phase,soft magnetic phase,and nonmagnetic phase.The calculated result shows that perpendicular orientation degree of the texture and proportion of a hard magnetic phase to the total phase in the annealed film are both enhanced by increasing Au interlayer thickness.This result can be conducive to the improvement of the perpendicular anisotropy and the coercivity of the FePt nanocomposite film in the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号