首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in the amino acid composition, phosphorylation pattern, or intracellular levels of topoisomerase II have been associated with resistance to antineoplastic agents whose effects are mediated through interactions with this enzyme. To develop a model system with which to investigate the determinants of topoisomerase II sensitivity or resistance to antineoplastic agents that target this enzyme, a cDNA encoding the wild-type Drosophila melanogaster topoisomerase II was ligated into a mammalian expression vector containing a glucocorticoid-inducible mouse mammary tumor virus promoter and transfected into an epipodophyllotoxin-resistant Chinese hamster ovary cell line (VPM(r)-5). In two transfectants carrying an intact, full-length Drosophila topoisomerase II cDNA, exposure to the inducing agent, dexamethasone (10 microM), resulted in complementation of the endogenous mutant topoisomerase II and phenotypic reversion to etoposide sensitivity. In the presence of glucocorticoid, etoposide-induced cytotoxicity increased 20-fold, despite the fact that Drosophila topoisomerase II mRNA expression was only 0.1% of that of the endogenous mammalian topoisomerase II. Induced cells demonstrated a marked increase in DNA single strand breaks compared with uninduced resistant cells, thereby providing biochemical evidence supporting increased DNA strand cleavage due to activation of the Drosophila enzyme. These observations demonstrate the ability of a wild-type Drosophila topoisomerase II to complement a mutant mammalian enzyme and suggest that transfectants capable of conditional topoisomerase II expression represent a useful model for studies of the biochemical pharmacology and structure-function relationships of normal and mutant enzymes.  相似文献   

2.
Vaccinia topoisomerase has proven to be an instructive model system for mechanistic studies of the type IB family of DNA topoisomerases. The catalytically relevant functional groups at the active site and the circumferential topoisomerase-DNA interface were correctly surmised by mutational and footprint analysis of vaccinia topoisomerase in advance of structure determinations by X-ray crystallography. It is now evident from multiple crystal structures that the catalytic domains of type IB topoisomerases and site specific recombinases derive from a common ancestral strand transferase capable of forming a DNA-(3'-phosphotyrosyl)-enzyme intermediate. A constellation of conserved amino acids catalyzes attack of the tyrosine nucleophile on the scissile phosphate. Domain dynamics and DNA-induced conformational changes within the catalytic domain are likely to play a role in triggering strand scission and coordinating the strand exchange or strand passage steps.  相似文献   

3.
4.
The nucleic acid-binding domain of Escherichia coli DNA topoisomerase III (Topo III) has been identified using a selection procedure designed to isolate inactive Topo III polypeptides. Deletion of this binding domain, contained in the carboxyl terminus of Topo III, results in a drastic reduction in the ability of the enzyme to bind to single-stranded DNA and RNA substrates. Successive truncation of the enzyme within this region results in the gradual loss of nucleic acid binding activity and in a gradual change in the mechanism of Topo III-catalyzed relaxation of negatively supercoiled DNA. The reduction of nucleic acid binding activity of the truncated polypeptides does not result in a loss of cleavage site specificity for the enzyme, suggesting that other amino acids are involved in the positioning of the nucleic acid within the nicking/closing site of the topoisomerase.  相似文献   

5.
The type I DNA restriction and modification enzymes of prokaryotes are multimeric enzymes that cleave unmethylated, foreign DNA in a complex process involving recognition of the methylation status of a DNA target sequence, extensive translocation of DNA in both directions towards the enzyme bound at the target sequence, ATP hydrolysis, which is believed to drive the translocation possibly via a helicase mechanism, and eventual endonucleolytic cleavage of the DNA. We have examined the DNA binding affinity and exonuclease III footprint of the EcoKI type IA restriction enzyme on oligonucleotide duplexes that either contain or lack the target sequence. The influence of the cofactors, S-adenosyl methionine and ATP, on binding to DNA of different methylation states has been assessed. EcoKI in the absence of ATP, with or without S-adenosyl methionine, binds tightly even to DNA lacking the target site and the exonuclease footprint is large, approximately 45 base-pairs. The protection is weaker on DNA lacking the target site. Partially assembled EcoKI lacking one or both of the subunits essential for DNA cleavage, is unable to bind tightly to DNA lacking the target site but can bind tightly to the recognition site. The addition of ATP to EcoKI, in the presence of AdoMet, allows tight binding only to the target site and the footprint shrinks to 30 base-pairs, almost identical to that of the modification enzyme which makes up the core of EcoKI. The same effect occurs when S-adenosyl homocysteine or sinefungin are substituted for S-adenosyl methionine, and ADP or ATPgammaS are substituted for ATP. It is proposed that the DNA binding surface of EcoKI comprises three regions: a "core" region which recognises the target sequence and which is present on the modification enzyme, and a region on each DNA cleavage subunit. The cleavage subunits make tight contacts to any DNA molecule in the absence of cofactors, but this contact is weakened in the presence of cofactors to allow the protein conformational changes required for DNA translocation when a target site is recognised by the core modification enzyme. This weakening of the interaction between the DNA cleavage subunits and the DNA could allow more access of exonuclease III to the DNA and account for the shorter footprint.  相似文献   

6.
The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins.  相似文献   

7.
Numerous chemotherapeutic agents act via stabilization of a topoisomerase (topo) II-DNA complex. HL-60/AMSA, a human leukemia cell line, is resistant to intercalator-mediated DNA complex formation and cytotoxicity. HL-60/AMSA contains a mutant form of topo IIalpha that was thought to explain this resistance. However, our present data show that expression of topo IIbeta RNA in HL-60/AMSA is only 10% of that in HL-60, and topo IIbeta protein levels are undetectable. Southern analysis of topo IIbeta shows no differences in gene dosage between the two cell lines but does show differences in the restriction patterns. These data suggest that decreased topo IIbeta expression may contribute to the intercalator resistance of HL-60/AMSA cells.  相似文献   

8.
Catalytic inhibitors of mammalian DNA topoisomerase II have been found recently in natural and synthetic compounds. These compounds target the enzyme within the cell and inhibit various genetic processes involving the enzyme, such as DNA replication and chromosome dynamics, and thus proved to be good probes for the functional analyses of the enzyme in a variety of eukaryotes from yeast to mammals. Catalytic inhibitors were shown to be antagonists against topoisomerase II poisons. Thus bis(2,6-dioxopiperazines) have a potential to overcome cardiac toxicity caused by potent antitumor anthracycline antibiotics such as doxorubicin and daunorubicin. ICRF-187, a (+)-enantiomer of racemic ICRF-159, has been used in clinics in European countries as cardioprotector. Furthermore, bis(2,6-dioxopiperazines) enhance the efficacy of topoisomerase II poisons by reducing their side effects in preclinical and clinical settings. Bis(2,6-dioxopiperazines) per se among others have antitumor activity, and one of their derivatives, MST-16 or Sobuzoxane, bis(N1-isobutyloxycarbonyloxymethyl-2, 6-dioxopiperazine), has been developed in Japan as an anticancer drug used for malignant lymphomas and adult T-cell leukemia in clinics.  相似文献   

9.
BACKGROUND: Oral fat tolerance tests (FTTs) have been widely used as a tool to investigate post-prandial lipaemia. However, there is no consensus regarding the type and amount of fat used in the tests. METHODS: We compared three commonly used FTTs, each containing 63 g of fat: a mixed meal, a liquid cream meal and a liquid soybean oil meal. The study group consisted of 10 healthy normolipidaemic men. We measured triglycerides (TGs), retinyl esters (REs), apolipoprotein E (apoE), apolipoprotein B-48 (apoB-48) and apolipoprotein B-100 (apoB-100) in plasma and in triglyceride-rich lipoprotein (TRL) fractions separated by density-gradient ultracentrifugation at baseline and 3, 4, 6, and 8 h after the FTTs. RESULTS: We observed similar TGs, apoE, apoB-48 and apoB-100 responses after all three FTTs, despite the different fatty acid composition of the meals. In contrast, the commonly used marker for exogenous particles, RE, differed clearly when polyunsaturated (soybean oil) and saturated fat (cream or mixed meal) were used. The RE response in plasma (P < 0.005, repeated measures ANOVA), in chylomicrons (P < 0.013) and in very low-density lipoprotein (VLDL) 1 (P < 0.017), as well as the RE area under the incremental curve in plasma and chylomicron fractions, were markedly increased after the soybean oil meal compared with the mixed meal and cream meal tests. The peak of RE response occurred parallel to the responses of other markers (i.e. TG or apoB-48) of post-prandial TRL during soybean oil meal. In contrast, RE peak concentration was delayed after saturated fat-containing meals. After soybean oil, FTT plasma cholesterol concentration was lower and the chylomicron cholesterol concentration was higher compared with mixed or cream meals, but no differences were detected in post-prandial high-density lipoprotein (HDL)-cholesterol concentration. CONCLUSION: When the amount of fat is similar, post-prandial responses of TG, apoE, apoB-48, apoB-100 and HDL-cholesterol were comparable after different FTTs.  相似文献   

10.
Myc proteins are basic helix-loop-helix/leucine-zipper proteins that bind to specific DNA sequences. In vivo, Myc proteins have been found associated with Max, another basic helix-loop-helix/leucine-zipper protein. However, it is not known to what extent the dimerization of Myc with Max is required for the manifestation of the Myc-induced phenotype. To investigate this, we constructed a dominant-negative mutant of Max, named dMax, that inhibits sequence-specific DNA binding of Myc proteins. Using a rat neuroblastoma model system, we show that dMax reverts N-Myc-induced changes in cellular gene expression. A control mutant of dMax that contains a proline residue in the leucine-zipper region was unable to bind to N-Myc and did not revert the N-Myc-induced changes in cellular gene expression. These data support the hypothesis that N-Myc affects neuroblastoma gene expression through the formation of a DNA-binding heterodimeric complex with Max in vivo.  相似文献   

11.
Syringomycin-E (SE) was significantly lethal to Aspergillus and Fusarium species at between 1.9 and 7.8 micrograms/ml. SE complexed with the following fungal wall constituents (in order of binding): beta-1,3-glucan > chitin > mannan > ergosterol = cholesterol. Cytotoxicity in HeLa cells was proportional to the SE concentration, while the amount required for cytotoxicity was 3 to 20 times that needed to kill 95% of the fungi tested.  相似文献   

12.
New anticancer drugs that target DNA topoisomerase I (topo I) are showing activity against a wide variety of solid human neoplasms. These drugs work by a novel mechanism of action and cause topo I-mediated DNA breaks. These DNA breaks become lethal in cycling cells when they interact with the replication fork. Because of the challenges in treating metastatic malignant melanoma, we performed an immunohistochemical study of this group of neoplasms to search for the presence of molecular markers that might indicate tumor response to topo I active drugs. Using a new immunohistochemical stain for topo I, we found elevation of this protein in 10 of 24 cases (41.6%) of metastatic malignant melanoma. The metastatic tumors that showed increased expression of topo I (2+ or 3+) had statistically significant higher proliferation indices, measured by immunohistochemical staining for DNA topo II-alpha, than did metastatic lesions with no detectable topo I expression. The average topo II-alpha index of metastatic melanomas with 2+ topo I expression was 45.1 (SD = 17.9) and with 3+ topo I expression was 52.3 (SD = 32.5). These values were found to be statistically different (P = .05) than the average topo II-alpha index of 18.9 (SD = 17.7) found for metastatic melanomas without detectable topo I immunostaining. Immunohistochemical staining for p53 suggested abnormal p53 function in 6 of the 10 melanomas (60%), which showed elevations of topo I (2 to 3+ topo I immunostaining) but normal p53 function in all 14 metastatic lesions that showed normal topo I expression.  相似文献   

13.
The radiation protective effect of thiol compounds is unequivocal and their use is only limited by their toxic effects. We used the principle of alpha alkylation, which renders amino acids unmetabolizable, to reduce the toxicity of homocysteine. This product, alpha-methyl-homocysteine thio-lactone, was tested for toxicity and radiation protective effect along with known protectors L-cysteine, cysteamine and WR 1065 in cell culture using V79-4 Chinese hamster lung cells. The three-day growth curve assays, useful to measure overall effects on cell growth, revealed lowest toxicity for alpha-methyl-homocysteine thiolactone (GL-2). Clonogenic survival tests, used to evaluate the retention of reproductive integrity, were carried out and revealed that GL-2 had no adverse effects in this test system. Radiation protection tests showed that GL-2 exhibited protective activity against radiation induced lethality above that seen with cysteine and cysteamine, but below WR 1065. However, GL-2 showed little or no negative effects toward the cell itself, in direct contrast to WR 1065. Our findings show a potentially important tool and principle to reduce toxicity of radiation protectors with analogous structures.  相似文献   

14.
Bulgarein, a fungal metabolite, induced mammalian topoisomerase I-mediated DNA cleavage in vitro. The cleavage activity of bulgarein was comparable to that of camptothecin at a drug concentration range of 0.025-approximately 5 microM. The DNA cleavage induced by bulgarein was suppressed at concentrations above 12.5 microM. Treatment of a reaction mixture containing bulgarein and topoisomerase I with elevated temperature (65 degrees C) resulted in a substantial reduction in DNA cleavage, suggesting that the topoisomerase I-mediated DNA cleavage induced by bulgarein is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex." Intensity of cleaved DNA fragments induced by bulgarein with topoisomerase I was different from that induced by camptothecin. Bulgarein inhibited catalytic activities of both topoisomerase I and topoisomerase II. The changes in absorption spectra of bulgarein in the visible region observed upon addition of increasing amounts of calf thymus DNA indicate that bulgarein interacts with DNA. DNA (un)winding assay by two-dimensional gel electrophoresis showed that bulgarein induced the winding of DNA in the opposite direction to that of an intercalator so that positively supercoiled molecules are produced. Thus, bulgarein represents a new class of drugs which stabilizes the cleavable complex of topoisomerase I and alters the structure of DNA in a manner leading to a tightening of the helical twist.  相似文献   

15.
Cleavage sites of eukaryotic DNA topoisomerase I on curved linear DNAs are clustered, map on the same side of the curve (the external one) and their distribution has the same period as the helical repeat, as observed on curved DNA tracts of Crithidia fasciculata, of Saccharomyces cerevisiae ARS1, of pT7CAT and on synthetic DNAs. The effects of the tridimensional context on both the cleavage and the topoisomerization reactions of DNA topoisomerase I were determined using serial DNA constructs made with inserts in which synthetic curves lie in a plane and in which the orientation of the planes of curvature is shifted by 72 degrees, 144 degrees, 216 degrees, 288 degrees and 360 degrees. The insertion of a curve markedly changes the reaction properties of the surrounding sequences.  相似文献   

16.
Eukaryotic type IB topoisomerases catalyze the cleavage and rejoining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate. The 314-amino acid vaccinia topoisomerase is the smallest member of this family and is distinguished from its cellular counterparts by its specificity for cleavage at the target sequence 5'-CCCTT downward arrow. Here we show that Topo-(81-314), a truncated derivative that lacks the N-terminal domain, performs the same repertoire of reactions as the full-sized topoisomerase: relaxation of supercoiled DNA, site-specific DNA transesterification, and DNA strand transfer. Elimination of the N-terminal domain slows the rate of single-turnover DNA cleavage by 10(-3.6), but has little effect on the rate of single-turnover DNA religation. DNA relaxation and strand cleavage by Topo-(81-314) are inhibited by salt and magnesium; these effects are indicative of reduced affinity in noncovalent DNA binding. We report that identical properties are displayed by a full-length mutant protein, Topo(Y70A/Y72A), which lacks two tyrosine side chains within the N-terminal domain that contact the DNA target site in the major groove. We speculate that Topo-(81-314) is fully competent for transesterification chemistry, but is compromised with respect to a rate-limiting precleavage conformational step that is contingent on DNA contacts made by Tyr-70 and Tyr-72.  相似文献   

17.
Strong dimerization of the repressor, mediated by the carboxyl (C)-terminal domain, is a prerequisite for forming a specific complex with DNA and cooperative DNA binding to form tetramers. We have generated a computer model of the C-terminal domain of the 434 repressor based on the crystal structure of the homologous UmuD' protein. This model predicts that residues in the primary sequence between 93 and 168 contribute to the dimer interface. We changed several amino acid residues located in this region. Gel filtration and crosslinking assays were used to characterize the strength and specificity of dimerization of the purified repressor C-terminal domain dimer interface mutants. These results indicate that amino acid residues K121, H139, D161 and N163 contribute to the strength and/or specificity of dimerization. The relative affinity of the bacteriophage 434 repressor for 434 operators is determined, in part, by the repressor's ability to detect sequence-dependent structural alterations in the non-contacted region at the center of an operator site. We find that the relative ability of C-terminal domain dimer interface mutant repressors to dimerize does not necessarily predict their relative abilities to bind DNA, and that these proteins are deficient in detecting non-contacted base-dependent differences in operator strength. Our results show that the structure of the DNA in complex with these mutant proteins differs from that found in wild-type repressor-operator complexes, even though the sites of these mutations lie in a separate domain from that which contacts the DNA. These observations demonstrate that the structural integrity of the C-terminal domain dimer interface is required to appropriately orient the DNA binding information contained within the DNA-contacting N-terminal domain.  相似文献   

18.
Psorospermin is a plant natural product that shows significant in vivo activity against P388 mouse leukemia. The molecular basis for this selectivity is unknown, although psorospermin has been demonstrated to intercalate into DNA and alkylate N7 of guanine. Significantly, the alkylation reactivity of psorospermin at specific sites on DNA increased 25-fold in the presence of topoisomerase II. In addition, psorospermin trapped the topoisomerase II-cleaved complex formation at the same site. These results imply that the efficacy of psorospermin is related to its interaction with the topoisomerase II-DNA complex. Because thermal treatment of (N7 guanine)-DNA adducts leads to DNA strand breakage, we were able to determine the site of alkylation of psorospermin within the topoisomerase II gate site and infer that intercalation takes place at the gate site between base pairs at the +1 and +2 positions. These results provide not only additional mechanistic information on the mode of action of the anticancer agent psorospermin but also structural insights into the design of an additional class of topoisomerase II poisons. Because the alkylation site for psorospermin in the presence of topoisomerase II can be assigned unambiguously and the intercalation site inferred, this drug is a useful probe for other topoisomerase poisons where the sites for interaction are less well defined.  相似文献   

19.
We have employed a broad range of spectroscopic, calorimetric, DNA cleavage, and DNA winding/unwinding measurements to characterize the DNA binding and topoisomerase I (TOP1) poisoning properties of three terbenzimidazole analogues, 5-phenylterbenzimidazole (5PTB), terbenzimidazole (TB), and 5-(naphthyl[2,3-d]imidazo-2-yl)bibenzimidazole (5NIBB), which differ with respect to the substitutions at their C5 and/or C6 positions. Our results reveal the following significant features. (i) The overall extent to which the three terbenzimidazole analogues poison human TOP1 follows the hierarchy 5PTB > TB > 5NIBB. (ii) The impact of the three terbenzimidazole analogues on the superhelical state of plasmid DNA depends on the [total ligand] to [base pair] ratio (rbp), having no effect on DNA superhelicity at rbp ratios < or = 0.1, while weakly unwinding DNA at rbp ratios > 0.1. This weak DNA unwinding activity exhibited by the three terbenzimidazoles does not appear to be correlated with the abilities of these compounds to poison TOP1. (iii) Upon complexation with both poly(dA).poly(dT) and salmon testes DNA, the three terbenzimidazole analogues exhibit flow linear dichroism properties characteristic of a minor groove-directed mode of binding to these host DNA duplexes. (iv) The apparent minor groove binding affinities of the three terbenzimidazole analogues for the d(GA4T4C)2 duplex follow a qualitatively similar hierarchy to that noted above for ligand-induced poisoning of human TOP1-namely, 5PTB > TB > 5NIBB. In the aggregate, our results suggest that DNA minor groove binding, but not DNA unwinding, is important in the poisoning of TOP1 by terbenzimidazoles.  相似文献   

20.
The DNA glycosylase MutY, which is a member of the Helix-hairpin-Helix (HhH) DNA glycosylase superfamily, excises adenine from mispairs with 8-oxoguanine and guanine. High-resolution crystal structures of the MutY catalytic core (cMutY), the complex with bound adenine, and designed mutants reveal the basis for adenine specificity and glycosyl bond cleavage chemistry. The two cMutY helical domains form a positively-charged groove with the adenine-specific pocket at their interface. The Watson-Crick hydrogen bond partners of the bound adenine are substituted by protein atoms, confirming a nucleotide flipping mechanism, and supporting a specific DNA binding orientation by MutY and structurally related DNA glycosylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号