首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Error compensation in flexible end milling of tubular geometries   总被引:2,自引:0,他引:2  
There are many machining situations where slender tools are used to machine thin walled tubular workpieces. Such instances are more common in machining of aircraft structural parts. In these cases, cutting force induced tool as well as workpiece deflections are quite common which result into surface error on machined components. This paper presents a methodology to compensate such tool and workpiece induced surface errors in machining of thin walled geometries by modifying tool paths. The accuracy with which deflections can be predicted strongly depends on correctness of the cutting force model used. Traditionally employed mechanistic cutting force models overestimate tool and workpiece deflections in this case as the change of process geometry due to deflections is not accounted in modeling. Therefore, a cutting force model accounting for change in process geometry due to static deflections of tool and workpiece is adopted in this work. Such a force model is used in predicting tool and workpiece deflection induced surface errors on machined components and then compensating the same by modifying tool path. The paper also studies effectiveness of error compensation scheme for both synclastic and anti-clastic configurations of tubular geometries.  相似文献   

2.
Recently, ultra-precision machining using a single crystal diamond tool has been developing very rapidly, especially in the fields of production processes for optical or magnetic parts such as magnetic discs, laser mirrors, polygon mirrors and copier drums. As a result, it has been successfully extended to machine various soft materials, generating mirror-like surfaces to sub-micron geometric accuracy with the ultra-precision CNC machine and the single crystal diamond tool. With the real cutting operation, the geometric accuracy and the surface finish attainable in machined surfaces are mainly determined by both of the sharpness of a cutting tool and stability of the machine vibration. In this study, for monitoring the progress of machining state for assuring the machining accuracy and the surface quality, a new monitoring method of machining states in face-cutting with diamond tool is proposed, using the frequency response of multi-sensors signal, which includes wear state of tool in terms of the energy within the specific frequency band. A magnetic disc is machined on the ultra-precision lathe.  相似文献   

3.
Carbon fiber reinforced plastics (CFRP) are used for various aircraft structural components because of their superior mechanical and physical properties such as high specific strength, high specific stiffness, etc. However, when CFRP are machined, rapid tool wear and delamination are troublesome. Therefore, cost effective and excellent quality machining of CFRP remains a challenge. In this paper, the rotary ultrasonic elliptical machining (RUEM) using core drill is proposed for drilling of holes on CFRP panels. This method combines advantages of core-drill and elliptical tool vibration towards achieving better quality, delamination free holes. The cutting force model and chip-removal phenomenon in ultrasonic elliptical vibration cutting are introduced and analyzed. The feasibility to machine CFRP for RUEM is verified experimentally. The results demonstrate that compared to conventional drilling (CD), the chip-removal rate has been improved, tool wear is reduced, precision and surface quality around holes is enhanced, delamination at hole exits has been prevented and significant reduction in cutting force has been achieved.  相似文献   

4.
Accuracy of CNC machined components is affected by a combination of error sources such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other errors like tool deflection and geometrical errors that have a big portion of total error need more sophisticated solutions. Conventional error reduction methods are considered as low efficiency and human dependent methods. Most of recently developed solutions cannot fulfill workshop needs and are limited to research papers. In the present study, machining code modification strategy has been considered as an applicable and effective solution to enhance precise machined components. Appropriate tool deflection estimation model as well as geometrical error analyzing methods have been selected and complementary algorithms for compensation of these errors have been developed. Metal cutting process has been modeled in a 3D simulation environment and implemented in force/deflection calculations. A software has been developed to generate compensated tool path NC program by tracing the initial tool path and compensating deflection/geometry deviations. The new procedure developed in the present work has been validated by machining Spline contours. The results show that using the new method, accuracy of machined features can be improved by about 8-10 times in a single pass.  相似文献   

5.
采用在重型卧车上粗加工和半精加工,在磨床上精加工的办法加工偏心轴。用数控镗床定心解决了定心精度问题,用固定配重A和可调整配重块B解决了配重平衡问题。  相似文献   

6.
Recently, precision machining technology has been developed continuously in order to achieve high productivity and assured quality of precision parts in several industrial fields such as; lasers, optics, quartz vibrators, semiconductors, aircraft and artificial satellites etc. Waviness may occur on the surface of machined parts due to the table motion error and the dynamic cutting mechanism between the tool and the workpiece and may impair the form accuracy of the precision machined parts. In this research, a micro cutting device with piezo-electric actuator has been developed in order to control depth of cut precisely and compensate the waviness on the surface of the workpiece. Experiments have been carried out on a precision lathe. The characteristics of the surface profile and the cause of the waviness profile have been analyzed and waviness profiles of some cases have been compared with those of experiments.  相似文献   

7.
The elliptical vibration texturing process is a vibration assisted machining method for the fast generation of micro structured surfaces. It adds a higher order motion component to the cutting tool that leads to periodic changes in the cutting depth during the machining process. This results in the creation of micro-dimples on the machined surface, whose shape is a function of the tool geometry and trajectory. This paper studies the surface generation mechanics of the elliptical vibration texturing process through experimentation and modeling. A surface generation algorithm is presented for this newly developed process. The model fully describes the motion and the 3D geometry of the cutting tool including its rake face, flank face, and the cutting edge, since all these tool features influence the topography of the generated surface. Since the process takes place in the micro/meso-scale cutting regime, the model includes the minimum chip thickness and elastic recovery effects. The experimental results are shown to validate the simulation model. The simulation model is used to characterize the influences of the process parameters on the texture patterns. The effects of the tool geometry on the process, including the cutting edge radius, are also analyzed.  相似文献   

8.
Brittle materials like glass are considered difficult-to-machine because of their high tendency towards brittle fracture during machining. The technological challenge in machining such brittle materials is to achieve material removal by plastic deformation rather than characteristic brittle fracture. In ductile mode machining, the material is removed predominantly by plastic deformation and any cracks produced due to possible fracture in the cutting zone are prevented from extending into the machined surface. This is achieved by selecting an appropriate cutting tool and suitable machining parameters. In ductile machining by milling process, fracture induced cracks are diverted away from final machined surface by selecting a suitable feed per edge less than a critical threshold value. Hence determination of critical feed per edge is of paramount importance to achieve ductile mode machining by milling process. This paper presents an analytical model based on fracture mechanics principles to predict the critical feed per edge in milling process of glass. The size and orientation of cracks originating from brittle fracture during machining have been quantified by using indentation test results and the critical value of feed per edge has been determined analytically as a function of intrinsic materials properties governing brittle fracture and plastic deformation. Furthermore, an equivalent tool included angle has been suggested for machining operation as against the indenter included angle to correlate the indentation and machining test results with improved degree of accuracy. Experimental results validated the proposed model fairly accurately. It has been established that if the longest cracks oriented in radial direction to the cutting edge trajectory are prevented from reaching the final machined surface by selecting a feed per edge less than or equal to a critical value, a crack-free machined surface can be achieved.  相似文献   

9.
A study of the impact of machine tool structure on machining processes   总被引:2,自引:1,他引:1  
This paper deals with parallel kinematics machine (PKM) applications for high speed machining. PKM behaviour is anisotropic, so structural deflection due to cutting loads generates different defects in the machined part, according to tool position and orientation in the workspace. The aim of the present study is the definition of a mechanical workspace where the part is machined to a specified quality level. Models of the machine tool structure, the load generated by the cutting phenomena and the machined surface are used to determine this workspace and are applied to a tricept structure with telescopic legs for grooving and drilling operations. A simulation shows that leg deflection gives rise to defects of the machined entity which are evaluated with respect to tool position and orientation. Finally, a mechanical workspace is defined for a drilling process using a tricept structure machine tool.  相似文献   

10.
This study presents a compensation method in milling machining in order to take into account tool deflection during tool-path generation. Tool deflection that occurs during machining, and especially when flexible tools such as end mills are used, can result in dimensional errors on workpieces. The study presented here is part two of a two-part paper. In part one the cutting force models and the surface prediction method have been presented.Here the focus is on tool deflection effects' integration during the generation of the tool path. A strategy is proposed that modifies the nominal tool trajectory, compensates for the machining errors due to tool deflection, without degrading the production performance and the machined accuracy. The methodology allows optimization of the tool path trajectory in order to achieved a specified tolerance. Some experimental results are presented.  相似文献   

11.
张存鹰  赵波  王晓博 《表面技术》2019,48(10):52-63
目的 对纵扭复合超声端面铣削加工表面微结构进行预测,以优化加工参数。方法 对纵扭复合超声端面铣削进行运动学分析,并在其基础上建立三维运动轨迹方程。对刀尖轨迹仿真,且研究该运动方式下的加工特性。通过对切削刃和工件离散化建立纵扭复合超声端面铣削表面微结构理论模型,并利用MATLAB进行三维表面仿真。对TC4钛合金进行超声振动切削试验。结果 理论仿真和切削试验结果均表明超声纵扭端面铣削时,随振幅的增加,由振动引起的表面微观结构特征愈加明显。扭纵幅值比增大时,加工表面微观结构凹坑效应弱化,At/Al=0.55时,加工表面呈条形片状微观结构。振动频率和主轴转速会影响表面微观结构单元的疏密程度。结论 加工表面微结构的生成与振动频率、振幅、扭纵复制比、切削速度等加工参数相关,铣削实验得到的加工表面变化趋势与表面理论模型吻合,该表面模型能够优化超声加工参数。  相似文献   

12.
A method of tool path compensation for repeated machining process   总被引:4,自引:0,他引:4  
This paper proposes a software method to compensate for the contour error in repeated machining process. In the proposed method, the profile of the first machined part is measured by a coordinate measuring machine. Based on the measured data, the tool path is modified by a compensation algorithm, and then, is represented by a series of linear segments. Finally, the compensated tool path is fed to the CNC machine tool for the machining of subsequent parts. Mathematical analysis and experimental evaluation are presented in this paper.  相似文献   

13.
The prediction of machining stability is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The machining performance is determined by the frequency characteristics of the machine tool structure and the dynamics of the cutting process, and can be expressed in terms of a stability lobe diagram. The aim of this study is to develop a finite element model to evaluate the dynamic characteristics and machining stability of a vertical milling system. Rolling interfaces with a contact stiffness defined by Hertz theory were used to couple the linear components and the machine structures in the finite element model. Using the model, the vibration mode that had a dominant influence on the dynamic stiffness and the machining stability was determined. The results of the finite element simulations reveal that linear guides with different preloads greatly affect the dynamic behavior and milling stability of the vertical column spindle head system. These results were validated by performing vibration and machining tests. We conclude that the proposed model can be used to accurately evaluate the dynamic performance of machine tool systems designed with various configurations and with different linear rolling components.  相似文献   

14.
The affected layer is generated within the machined surface layer through the cutting process. Cutting conditions such as the nose radius of the tool, feed rate and shape of cutting edge at the finishing operation affect the residual stress, surface hardness, and surface roughness. In this paper, it is shown that such machined surface property could be controlled by the setting of the cutting conditions to some extent. Then the effect of the machining conditions on the fatigue life was investigated through a fatigue test using the specimen finished under various cutting conditions. It was shown that it is possible to get longer fatigue life for machined parts than the virgin material or the carefully finished material without affected layer, only by setting the proper cutting conditions. Such a situation was realized when the generated residual stress was small and the induced surface hardness was high. A longer fatigue life for the machined components can be obtained by applying such cutting conditions as a low feed rate, a small corner radius and a chamfered cutting edge tool.  相似文献   

15.
Modelling the machining dynamics of peripheral milling   总被引:2,自引:0,他引:2  
The machining dynamics involves the dynamic cutting forces, the structural modal analysis of a cutting system, the vibrations of the cutter and workpiece, and their correlation. This paper presents a new approach modelling and predicting the machining dynamics for peripheral milling. First, a machining dynamics model is developed based on the regenerative vibrations of the cutter and workpiece excited by the dynamic cutting forces, which are mathematically modelled and experimentally verified by the authors [Liu, X., Cheng, K., Webb, D., Luo, X.-C. Improved dynamic cutting force model in peripheral milling—Part 1: Theoretical model and simulation. Int. J. Adv Manufact Tech, 2002, 20, 631–638; Liu, X., Cheng, K., Webb, D., Longstaff, A. P., Widiyarto, H. M., Jiang, X.-Q., Blunt, L., Ford, D. Improved dynamic cutting force model in peripheral milling—Part 2: Experimental verification and prediction. Int. J. Adv Manufact Tech, 2004, 24, 794–805]. Then, the mechanism of surface generation is analysed and formulated based on the geometry and kinematics of the cutter. Thereafter a simulation model of the machining dynamics is implemented using Simulink. In order to verify the effectiveness of the approach, the transfer functions of a typical cutting system in a vertical CNC machine centre were measured in both normal and feed directions by an instrumented hammer and accelerometers. Then a set of well-designed cutting trials was carried out to record and analyse the dynamic cutting forces, the vibrations of the spindle head and workpiece, and the surface roughness and waviness. Corresponding simulations of the machining processes of these cutting trials based on the machining dynamics model are investigated and the simulation results are analysed and compared to the measurements. It is shown that the proposed machining dynamics model can well predict the dynamic cutting forces, the vibrations of the cutter and workpiece. There is a reasonable agreement between the measured and predicted roughness/waviness of the machined surface. Therefore the proposed approach is proven to be a feasible and practical approach analysing machining dynamics and surface roughness/waviness for shop floor applications.  相似文献   

16.
During the machining of a part, a new surface is generated together with its dimensional deviations. These deviations are due to the presence of several phenomena (workpiece deflection under strong cutting forces, vibration of the machine tool, material spring-back, and so on) that occur during machining. Each elementary phenomenon results in an elementary machining error. Consequently, the accuracy of the manufactured workpiece depends on the precision of the manufacturing process, which it may be controlled or predicted.The first part of this work presents a new model to evaluate machining accuracy and part dimensional errors in bar turning. A model to simulate workpiece dimensional errors in longitudinal turning due to deflection of the tool, workpiece holder and workpiece is shown. The proposed model calculates the real cutting force according to the Unified Generalized Mechanics of Cutting approach proposed by Armarego, which allows one to take into account the three-dimensional nature (3D) of the cutting mechanism. Therefore, the model developed takes advantage of the real workpiece deflection, which does not lie in a plane parallel to the tool reference plane, and of the real 3D cutting force, which varies along the tool path due to change in the real depth of cut. In the first part of the work the general theory of the proposed approach is presented and discussed for 3D features. In the second part the proposed approach is applied to real cases that are mostly used in practice. Moreover, some experimental tests are carried out in order to validate the developed model: good agreement between numerical and experimental results is found.  相似文献   

17.
High-speed machining (HSM) is a technology used to increase productivity and reduce production costs. The prediction of stable cutting regions represents an important issue for the machining process, which may otherwise give rise to spindle, cutter and part damage. In this paper, the dynamic interaction of a spindle-tool set and a thin-walled workpiece is analysed by a finite element approach for the purpose of stability prediction.The gyroscopic moment of the spindle rotor and the speed-dependent bearing stiffness are taken into account in the spindle-tool set finite element model and induce speed-dependent dynamic behaviour. A dedicated thin-walled workpiece is designed whose dynamic behaviour interacts with the spindle-tool set. During the machining of this flexible workpiece, chatter vibration occurs at some stages of machining, depending on the cutting conditions and also on the tool position along the machined thin wall.By coupling the dynamic behaviour of the machine and the workpiece, respectively, dependent on the spindle speed and the relative position of both the systems, an accurate stability lobes diagram is elaborated.Finally, the proposed approach indicates that spindle speed regulation is a necessary constraint to guarantee optimum stability during machining of thin-walled structures.  相似文献   

18.
切削加工过程中材料损伤形式对加工表面质量会产生较大影响,现有仿真分析难以模拟真实颗粒失效行为,通过建立二维微观多相有限元模型能够深入了解材料损伤与表面质量的关系。基于常规切削(Conventional cutting,CC)与超声振动辅助切削(Ultrasonic vibration-assisted cutting,UVAC)两种加工方式,通过有限元仿真软件 Abaqus 对 20%SiCp / Al 复合材料的切削过程进行仿真模拟,阐释加工过程中刀具与工件的相互作用机理,并在同一参数下验证有限元仿真的准确性。通过设计单因素试验,对比两种加工方式及不同加工参数对切削力和表面粗糙度的影响规律,得出最佳加工参数组合,并对最佳加工参数下表面形貌进行分析。模拟和试验结果表明,SiC 颗粒断裂、颗粒耕犁、颗粒拔出以及 Al 基体撕裂是影响 SiCp / Al 复合材料加工质量的主要原因,刀具与颗粒不同的相对作用位置会产生不同的损伤形式。与常规切削相比,施加超声振动后可以有效抑制颗粒失效和基体损伤,使加工中的平均切削力(主切削力)降低 33%,工件已加工表面粗糙度值最大减小量为 531 nm,显著提高了表面质量。所建立的二维微观多相有限元模型,能够有效模拟铝基复合材料的加工缺陷和裂纹损伤问题, 对提高难加工材料的高质量表面制备有重要借鉴意义。  相似文献   

19.
Although compound surfaces and polyhedral models are widely used in manufacturing industry, the tool path planning strategies are very limited for such surfaces in five-axis machining and high speed machining. In this paper, a novel conformal map based and planar spiral guided spiral tool path generation method is described for NC machining of complex surfaces. The method uses conformal map to establish a relationship between 3D physical surface and planar circular region. This enables NC operation to be performed as if the surface is plat. Then through inversely mapping a planar spiral defined by a mathematical function into 3D physical space, the spiral cutter contact paths are derived without inheriting any corners on the boundary in the subsequent interior paths. The main advantage of the proposed method is that a smoother, longer and boundary conformed spiral topography tool path is developed. Therefore, the machined surface can be cut continuously with minimum tool retractions during the cutting operations. And it allows both compound surfaces and triangular surfaces can be machined at high speed. Finally, experimental results are given to testify the proposed approach.  相似文献   

20.
航发压气机叶片型面及加工工艺复杂。为降低加工成本、提高加工效率,对某型复杂薄壁航空发动机压气机叶片零件进行加工仿真研究。分析叶片的结构特点,结合加工工艺路线制定原则,制定了叶片加工工艺路线,规划了刀具轨迹;根据五轴机床行程及运动特点,定制了五轴机床专用后处理器,并将刀具轨迹后处理生成了叶片加工的NC程序,同时输出加工总计用时;构建立式五轴数控机床仿真模型,对加工工艺进行仿真验证,取代实际加工试切步骤,节省生产成本和时间。仿真加工结果验证了加工工艺的合理性和后处理的正确性,为加工参数的进一步优化和加工误差分析奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号