首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
啤酒生产过程中高级醇形成因素及控制   总被引:2,自引:0,他引:2  
高级醇是啤酒生产发酵过程形成的,目前可检出的高级醇有30多种.啤酒中高级醇的生成途径主要有氨基酸、α-酮酸途径和糖类物质合成高级醇途径.高级醇的生成与麦汁发酵过程的pH值、α-氨基氮含量、麦汁充氧量、麦汁浓度、发酵强度、酵母菌种及其接种量等因素有关,控制麦汁α-氨基氮含量、可发酵性糖、麦汁充氧量、发酵工艺条件、乙醛含量、酵母菌种及其接种量可有效控制啤酒中的高级醇含量.  相似文献   

2.
啤酒企业要在不增加设备的投资情况下提高啤酒产量 ,创造最佳的经济效益 ,缩短发酵周期则是有效的途径。而控制双乙酰生成 ,加速双乙酰还原 ,是缩短发酵周期必须首先解决好的问题。可以从以下几个方面入手。1 麦汁质量麦汁是酵母发酵的营养基液 ,是酵母所需氮源、碳源的提供体。麦汁组成是否合理 ,关系到酵母性能与发酵 ,代谢与啤酒最终质量。1 1麦汁中必须含有足够的α -氨基氮 ,以保证酵母生长对缬氨酸的需要及有效反馈抑制α -乙酰乳酸的过量生成。每升每度麦汁中α氨基氮的含量≥15mg/L ,如12°P麦汁≥180mg/L,10…  相似文献   

3.
在啤酒发酵过程中可以通过提高酵母接种量或者高浓酿造来提高产量,然而,这两种技术对酵母的新陈代谢都有显著的影响.在这项研究中,对高浓度酿造和高酵母数发酵相结合对酵母的生理和风味物质生成的影响进行了评价.此外,试验在快速发酵系统中通过优化麦汁中游离氨基氮含量来降低总双乙酰的产生.较高的麦汁浓度会导致酵母活力的下降,这与海藻糖含量的增加及与压力相关的基因表达水平的增加有关.不只是麦汁浓度,不同的可发酵性糖含量对酵母发酵性能及风味物质的生成都有强烈的影响.麦汁中高含量的蔗糖对氨基酸的吸收、酵母的生长、糖原的形成、海藻糖的重复利用、乙酯的合成和总双乙酰的还原速度都有促进作用.与其他的高浓度麦汁相比,酵母处于高浓度蔗糖环境中会经历更高的渗透压和压力相关的影响.尽管蔗糖相比于麦芽糖可以促进转录激活因子ATF1的活性,可以观察到乙酸酯类明显的降低.但是考虑到蔗糖对酵母性能的不利影响,采用蔗糖和麦芽糖组合来提高麦汁浓度还是可取的.  相似文献   

4.
研究了酿酒酵母Saccharomyces pastorianus(FBY0095)在六种不同氮源组成麦汁(20°P)中生物量、表观发酵度、乙醇浓度以及游离氨基氮(FAN)消耗量等指标的差异。结果表明,在20°P超高浓麦汁发酵中,麦汁氮源含量和组成对酵母发酵性能具有显著影响。随着麦汁中可同化氮量的提高,加速了酵母对糖的吸收利用,提高了酵母稳定期生物量和乙醇产量,发酵时间缩短了20%。当氮源匮乏(约为FAN=124.59 mg/L)时,补充适量大豆分离蛋白水解物(SPIH)于超高浓麦汁中,增加了麦汁氮源的多样性,使菌体增长量提高8.3%,乙醇产量提高4.43%,是酵母生长的有效氮源。   相似文献   

5.
对酵母代谢形成SO2的影响因素从麦汁组成、糖化工艺以及发酵工艺3个方面进行了研究。通过对麦汁组成方面的研究表明,增加麦汁中蛋氨酸的含量可以减少酵母代谢产生的SO2,增加麦汁中的苏氨酸的含量可以促进酵母代谢形成SO2,麦汁中硫酸根含量的增加可以使酵母代谢形成SO2的量增加;通过对糖化工艺方面的研究可知,使用辅料会减少发酵时产生的SO2,在麦汁中添加Zn2+会增加发酵时产生的SO2;通过对发工艺方面的研究可知,提高麦汁的充氧量会减少SO2的产生,低的酵母接种量有利于SO2的生成,高浓发酵会使发酵后SO2的含量显著增加。  相似文献   

6.
赵英 《啤酒科技》2014,(4):59-67
通过应用较高接种比例的方法可以提高发酵过程的生产效率。其次是使用高浓酿造已经成为一种标准的提高生产能力的措施,但这两种工艺会对酵母代谢产生影响。在本研究中,我们组合了高浓和高酵母细胞密度的发酵,然后评估其对酵母生理和最终啤酒风味的影响,另外,试图通过优化麦汁的游离氨基氮含量来降低快速发酵的总联二酮产生量。较高的麦汁浓度导致酵母活力的下降,这可以从压力相关基因表达的增加和海藻糖含量较高来看出;更为严重的是可发酵性糖的种类及数量差异也会对酵母发酵性能和风味产生影响。麦汁中含有较高浓度的蔗糖会刺激氨基酸的吸收、酵母增殖、肝糖形成、海藻糖的重复利用、乙基酯的合成以及总联二酮的还原速度等。酵母在高浓度蔗糖的环境中较其他高浓麦汁会面临更大的渗透压影响。尽管将蔗糖和麦芽糖相比,对ATF1的表达有促进作用,但乙酸酯的生成显著下降。考虑蔗糖对酵母性能的负面作用,避免使用高浓度的这些糖类是明智的,我们采用了一种蔗糖和麦芽糖复合糖浆作为提高麦汁浓度的方法。  相似文献   

7.
研究了酿酒酵母Saccharomyces pastorianus(FBY0095)在六种不同氮源组成麦汁(20°P)中生物量、表观发酵度、乙醇浓度以及游离氨基氮(FAN)消耗量等指标的差异。结果表明,在20°P超高浓麦汁发酵中,麦汁氮源含量和组成对酵母发酵性能具有显著影响。随着麦汁中可同化氮量的提高,加速了酵母对糖的吸收利用,提高了酵母稳定期生物量和乙醇产量,发酵时间缩短了20%。当氮源匮乏(约为FAN=124.59 mg/L)时,补充适量大豆分离蛋白水解物(SPIH)于超高浓麦汁中,增加了麦汁氮源的多样性,使菌体增长量提高8.3%,乙醇产量提高4.43%,是酵母生长的有效氮源。  相似文献   

8.
为降低高浓啤酒发酵中高级醇的生成量,研究18°Bx麦汁啤酒酿造过程中的加糖浆方式、酵母接种量和麦汁中α-氨基氮含量对啤酒高级醇生成量的影响。结果表明:18°Bx麦汁发酵高级醇生成量显著高于12°Bx麦汁;分两次加入制备18°Bx麦汁所需的糖浆量、控制18°Bx麦汁的酵母细胞接种量为3×107个/mL以及麦汁中α-氨基氮含量为230mg/L麦汁时,均有利于降低18°Bx高浓啤酒发酵过程中高级醇的生成量。  相似文献   

9.
浅论镁离子对啤酒发酵的影响   总被引:3,自引:0,他引:3  
讨论了麦汁中镁离子含量对啤酒酵母发酵的影响。镁离子是酵母代谢过程中许多酶的重要辅助因子,它的浓度直接影响啤酒的发酵。提高镁离子的含量,均会提高初始发酵率,提高酵母活性,促进酵母对麦芽三糖及麦芽糖的吸收,增加酒精生成率和生成量,从而提高啤酒发酵度。  相似文献   

10.
在啤酒发酵过程中可以通过提高酵母接种量或者高浓酿造来提高产量,然而,这两种技术对酵母的新陈代谢都有显著的影响。在这项研究中,对高浓度酿造和高酵母数发酵相结合对酵母的生理和风味物质生成的影响进行了评价。此外.试验在快速发酵系统中通过优化麦汁中游离氨基氯含量来降低总双乙酰的产生,较高的麦汁浓度会导致酵母活力的下降,这与海藻糖含量的增加及与压力相关的基因表达水平的增加有关。不只是麦汁浓度。不同的可发酵性糖含量对酵母发酵性能及风味物质的生成都有强烈的影响。麦汁中高含量的蔗糖对氨基酸的吸收、酵母的生长、糖原的形成、海藻糖的重复利用、乙酯的合成和总双乙酰的还原速度都有促进作用.与其他的高浓度麦汁相比.酵母处于高浓度蔗糖环境中会经历更高的渗透压和压力相关的影响。尽管蔗糖相比于麦芽糖可以促进转录激活因子ATFI的活性,可以观察到乙酸酯类明显的降低。但是考虑到蔗糖对酵母性能的不利影响,采用蔗糖和麦芽糖组合来提高麦汁浓度还是可取的。  相似文献   

11.
Breweries use different yeast strains to create beers with different flavours and aromas. Yeast propagation must produce yeast that performs consistently from the first fermentation to harvesting and re-pitching in subsequent fermentations. Breweries propagate yeast in wort leading to low efficiency fermentative growth in Crabtree-positive yeast. There is limited knowledge on the impact on beer production when fermenting with yeast propagated in sugar limited and nutrient supplemented wort. It was hypothesised that propagating yeast in this way would have a positive impact on subsequent fermentation performance. Saccharomyces cerevisiae was propagated at the laboratory scale in standard wort with a high carbon to nitrogen (C:N) ratio (850) or in modified wort supplemented with yeast extract to achieve a low C:N ratio (100) and at varying sugar concentrations. Propagation in low C:N wort with 2°P sugar yielded a 27% decrease in fermentation efficiency and a 46% increase in cell production compared to 2°P high C:N wort. This suggests nitrogen is critical to the respiro-fermentative balance during growth. Yeast propagated in standard wort resulted in slower fermentations and significant under-attenuation compared to yeast grown in the modified wort with low sugar and high nitrogen. The results of this study suggest the nitrogen and sugar content drive the respiro-fermentative balance during yeast propagation. The metabolism of yeast during propagation induces significant downstream impacts on the subsequent fermentation performance and wort attenuation. © 2020 The Institute of Brewing & Distilling  相似文献   

12.
韩珍琼  张玲 《食品科学》2007,28(9):349-352
本实验研究了酵母在红薯淀粉做辅料的麦汁中的发酵特性,并与其在大米做辅料的麦汁中的发酵特性作了对比,结果表明其完成主发酵所用的时间、可发酵浸出物的变化、还原糖含量的变化、α-氨基氮的利用情况、双乙酰的生成量等均无明显的区别,而且酵母的生长繁殖正常。红薯淀粉作辅料的啤酒色度较大。  相似文献   

13.
The time required to ferment worts of varied composition to a given extent is dependent upon the extent of exponential growth in the early stages of fermentation; in the worts studied this is determined by the concentration of assimilable nitrogen. When the concentration of all the non-carbohydrate nutrients in malt wort is halved by dilution with carbohydrate, the addition of appropriate quantities of serine or arginine restores the rate of fermentation to that of the malt wort. Minor nutrients, other than amino acids specifically required by the yeasts used, are thus present in at least two-fold excess in the malt wort. The yeast produced during exponential growth in malt wort (sp.gr. 1·040) is able to ferment rapidly much greater quantities of fermentable carbohydrate than are present in that wort. The majority of the strains of yeast examined ferment equally well when either glucose or maltose is added to malt wort and do so whether the sugar is added prior to fermentation or towards the end; however, one strain fails to ferment satisfactorily if a substantial quantity of glucose is added to wort prior to fermentation, because of the subsequent failure of the yeast to adapt to ferment maltose. It is suggested that most brewing strains do not require to adapt to maltose utilization during the fermentation of wort.  相似文献   

14.
Because gluten-free type brewing with unmalted sorghum does not provide adequate nitrogen for complete fermentation, wort supplementation with ammonia (as diammonium phosphate, DAP) or lysine on yeast performance was investigated. By Phenotype Microarray, under aerobic conditions, greater yeast growth was indicated with DAP than lysine both as a single source and combined with sorghum wort amino acids. With sorghum fermentation, both DAP and lysine improved maltose and maltotriose uptake. However, DAP supplementation also maintained yeast numbers (24.0–21.3 × 106 cells mL−1), whereas there was a decline with lysine supplementation. Lysine supplementation also resulted in adverse effects on yeast cell morphology. Neither DAP nor lysine supplementation resulted in evident genetic change to the yeast, but the change in substrate from barley malt wort to unmalted sorghum wort slightly altered the yeast genetically. Therefore, ammonia as DAP has potential as a nitrogen supplement for improving yeast fermentation performance in sorghum gluten-free brewing.  相似文献   

15.
The growth of English top-fermentation yeasts in various nitrogen sources, used singly—including ammonium phosphate and a number of amino acids—has previously been investigated and reported upon. But malt wort, the natural medium for yeast growth, contains, not a single nitrogen source, but a mixture of many derived from the breakdown of barley proteins. It is therefore important to know whether growth in such mixtures is simply the average of growth in the individual nitrogen sources or whether the different nitrogen sources interact with each other in such a way as to produce enhanced or diminished growth. The object of the work described in this paper was to ascertain whether the admixture of two different nitrogen sources introduces any new effects unpredictable from the known behaviour of the same nitrogen sources used singly. Nutrient media were prepared containing graded proportions of various selected pairs of nitrogen sources. Four different top-fermentation brewery yeasts were cultured in these media, measurements being made of fermentation, nitrogen assimilation and rate and extent of yeast growth. It was thus possible to observe the influence of the percentage composition of any particular binary mixture of nitrogen nutrients upon the growth and fermentation of a variety of yeasts. Among the mixtures investigated there was generally found a slight enhancement of growth and fermentation over what would be expected from the individual behaviour of the nitrogen sources. In a few cases, however, the observed enhancement was very large and was practically independent of the particular variety of yeast used. No important depressive effects were found in any of the mixtures. It may therefore be concluded that the mere admixture of different nitrogen sources can make a special contribution to yeast growth and fermentation; this contribution is generally relatively small but may in some circumstances becomes very significant. A chemical interpretation of some of the phenomena of yeast growth in mixed nutrients has been put forward.  相似文献   

16.
Aroma‐active higher alcohols and esters are produced intracellularly in the cytosol by fermenting lager yeast cells, which are of major industrial interest because they determine aroma and taste characteristics of the fermented beer. Wort amino acid composition and their utilization by yeast during brewer's wort fermentation influence both the yeast fermentation performance and the flavour profile of the finished product. To better understand the relationship between the yeast cell and wort amino acid composition, Plackett–Burman screening design was applied to measure the changes in nitrogen composition associated with yeast amino acids uptake and flavour formation during fermentation. Here, using an industrial lager brewing strain of Saccharomyces pastorianus , we investigated the effect of amino acid composition on the accumulation of higher alcohols and volatile esters. The objective of this study was to identify the significant amino acids involved in the flavour production during beer fermentation. Our results showed that even though different flavour substances were produced with different amino acid composition in the fermentation experiments, the discrepancies were not related to the total amount of amino acids in the synthetic medium. The most significant effect on higher alcohol production was exercised by the content of glutamic acid, aromatic amino acids and branch chain amino acids. Leucine, valine, glutamic acid, phenylalanine, serine and lysine were identified as important determinants for the formation of esters. The future applications of this information could drastically improve the current regime of selecting malt and adjunct or their formula with desired amino acids in wort. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

17.
The impact of the initial dissolved oxygen, fermentation temperature, wort concentration and yeast pitching rate on the major fermentation process responses were evaluated by full factorial design and statistical analysis by JMP 5.01 (SAS software) software. Fermentation trials were carried out in 2L‐EBC tall tubes using an industrial lager brewing yeast strain. The yeast viability, ethanol production, apparent extract and real degree of fermentation were monitored. The results obtained demonstrate that very high gravity worts at 22°P can be fermented in the same period of time as a 15°P wort, by raising the temperature to 18°C, the oxygen level to about 22 ppm, and increasing the pitching rate to 22 × 106 cell/mL. When diluting to obtain an 11.5°P beer extract, the volumetric brewing capacity increased 91% for the 22°P wort fermentation and 30% using the 15°P wort. After dilution, the fermentation of the 22°P wort resulted in a beer with higher esters levels, primarily the compound ethyl acetate.  相似文献   

18.
分别使用酵母浸粉和混合氨基酸作为模拟葡萄汁(36 °Bx)的有机氮源发酵葡萄酒,以保证葡萄酒的正常发酵和最终产品品 质。 通过测定发酵过程中的二氧化碳生成量、还原糖、可同化氮、甘油和挥发性化合物含量变化,比较酵母浸粉和混合氨基酸对葡萄酒 品质的影响。 结果表明,使用酵母浸粉耗还原糖量为295.7 g/L,生成乙醇97.20 g/L、甘油26.50 g/L、乙酸1.08 g/L和乙酸乙酯46.05 mg/L, 与使用混合氨基酸相比,多消耗还原糖130.47 g/L,多生成乙醇46.14 g/L、甘油7.95 g/L和乙酸0.54 g/L,增幅分别为78.95%、90.38%、 42.84%和99.35%。 使用酵母浸粉比混合氨基酸的发酵程度大,速度快。 因此,可用适量酵母浸粉替代混合氨基酸作为葡萄酒发酵的 氮源补充。  相似文献   

19.
Detailed study of the fermentation of wort by Saccheromyces cerevisiae on a pilot scale showed that all the oxygen and considerable quantities of certain amino acids present in the wort were absorbed by the yeast before active fermentation commenced. The pH fell rapidly after pitching and reached a constant level after 32 hr. The α acids and iso α acids in the wort diminished in parallel with the decrease in pH and the increase in concentration of suspended yeast, respectively. Esters and higher alcohols appeared as the carbohydrate content of the wort diminished. Their production did not parallel the uptake of amino acids or changes in the amount of suspended yeast. The level of diacetyl reached a maximum when valine was fully taken up from the wort. Distillation of fermenting wort caused production of diacetyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号