首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
垦西油田部分高含硫稠油热采井场周围存在难闻的恶臭气味,严重影响环境安全,影响油井正常生产和后续产能建设。通过对垦西含硫异味气体产生及转化机理分析,明确了含硫稠油热采井井场异味是由水热裂解反应生成的硫化氢、硫醇硫醚等各类硫化物导致的。硫醇硫醚的臭味阈值较低,在较低浓度下即有较大异味。针对硫化氢、硫醇硫醚等恶臭气体,研制井筒异味气体处理剂并配套相应的加药处理工艺,在满足现场条件下,实现快速高效除臭,解决影响油井生产的环境问题,现场应用取得明显效果。  相似文献   

2.
针对目前胜利油田部分稠油热采井井场出现难闻的恶臭气味,影响周围人员健康和稠油资源开发的问题,分析确定了恶臭气味主要成分为甲硫醇和乙硫醇。结合油井生产特点,研制了两种分别适于地面管线加药处理和井筒加药处理的恶臭气味处理剂,并考察了处理剂的硫容和脱硫反应速率。针对某恶臭气味热采井,对比开展了地面管线加药和井筒加药处理试验,井筒加药处理显示了较好的经济性。对胜利油田某区块7口井开展现场处理,将恶臭气体质量浓度由150~3300 mg/m~3降至20 mg/m~3以下,达到了油井安全生产要求。  相似文献   

3.
采用通用的稠油热采单井系统试井模型分析加密钻井后的稠油油藏,难以得到准确的分析结果。为此,根据稠油油藏的渗流特征,建立了考虑热损失和邻井为生产井的稠油热采有限多井试井模型。应用压力在拉氏空间叠加的新方法,导出了模型的Laplace空间解。利用Stehfest数值反演,绘制了样板曲线,并分析了主要油藏地质和工程参数对样板曲线的影响。结果表明,考虑热损失时油井压力受邻井的影响不明显;而不考虑热损失时,稠油油藏开发中后期的油井压力受邻井的影响较为明显。研究考虑热损失的稠油热采有限多井试井可对稠油油藏进行更深入的描述。  相似文献   

4.
沥青质热裂解、临氢热裂解和临氢催化裂解反应动力学   总被引:1,自引:1,他引:0  
 实验考察了1种正戊烷不溶解的沥青质在703 K下的热裂解、临氢热裂解和由 NiMo/γ-Al2O3催化的临氢裂解反应。3种沥青质转化反应都能较好地吻合二级反应动力学,得到的表观速率常数分别为1.704×10-2、 2.435×10-2和9.360×10-2。建立三集总动力学模型,用于求解沥青质裂解转化生成液体油反应速率常数(k1)和与之平行的生成焦炭+气体反应速率常数(k3),以及由液体产物继续转化生成焦炭+气体的反应速率常数(k2)。对沥青质热裂解、临氢热裂解和临氢催化裂解反应,速率常数 k1分别为1.697×10-2、 2.430×10-2和9.355×10-2, k2分别为3.605×10-2、 2.426×10-2和6.347×10-3, k3分别为6.934×10-5、 5.416×10-5和4.803×10-5。  相似文献   

5.
针对注蒸汽热采稠油过程中产生酸性气体(CO2和H2S)等问题,以2-甲基噻吩、正辛烷以及稠油为研究对象,通过实验考察了黄铁矿对稠油水热裂解生成H2S的影响以及不同氛围对H2S产生的影响。结果表明:黄铁矿的存在对于H2S气体的产生有促进作用,且黄铁矿中硫元素是H2S气体中硫元素的重要来源;有氧气存在的条件下,会促进水热裂解反应的进行,从而增加H2S气体的生成量;黄铁矿在反应时产生的Fe2+对稠油水热裂解反应有催化作用,进而促进H2S气体的产生。  相似文献   

6.
孤岛部分稠油区块原油含硫量高在2%以上,稠油热采过程中原油中的含硫有机成分分解。生成硫化氢气体在套管内富集,对安全生产和作业造成危害。通过开发高效脱硫剂体系,将硫化氢转化为硫磺,同时研制一套可移动式撬装脱硫处理装里,实现对套管气中硫化氢的高效吸收,使处理后套管气中硫化氢含量低于最高容许浓度,并便于对不同区块的含硫油井进行处理,以解决因硫化氢影响稠油热采井作业安全的问题。  相似文献   

7.
国内外油田提高采收率技术进展与展望   总被引:5,自引:0,他引:5  
对国内外油田提高采收率技术发展作了概述,着重阐述了改善水驱、稠油热采、化学驱、气驱、微生物采油和物理法采油6个方面。目前,改善水驱、稠油热采、化学驱和气驱4类技术已进入矿场规模化应用,热采和气驱技术应用规模不断扩大,化学驱技术主要应用在中国,而微生物采油和物理法采油技术尚处于探索、试验阶段。综合国外经验和我国具体情况,指出目前提高采收率技术的攻关方向和发展趋势。研究认为,改善水驱技术通过层系细分重组和井网井型立体优化,建立合理、有效的注采系统,探索驱替剖面的均匀控制。稠油热采技术综合应用复杂结构井、蒸汽和各类助剂,改善稠油油藏开发效果。气驱技术应用规模有不断扩大的趋势,随着温室气体减排的要求,CO2驱油埋存项目不断增加。化学驱技术向高温高盐油藏、大孔道油藏和聚合物驱后油藏发展。  相似文献   

8.
稠油的储量远超常规石油的储量,但因稠油黏度大和密度大的特点而难以开采,高效经济开发稠油已成为石油领域的研究重点。热复合开采技术是目前高效开发稠油油藏的关键技术,其中多元热复合流体的相态特征是稠油油藏开采流程设计与评价的关键。为此,从热复合开采技术中的混合气体系和稠油-气体系2 个方面,系统地阐述了多元热复合流体相态的实验和理论研究现状。对于混合气体系相态,多采用静态法进行实验测试,使用状态方程结合混合规则进行理论预测,CO2,N2,H2O和CH4等常见气体分子组成的二元体系的相态测试趋于成熟,但缺少多元体系的测试数据与预测模型;对于稠油-气体系相态,总结了一般性实验流程与近年实验结果,提出一种加速油气相平衡的新型实验装置构想,指出目前理论预测在气体种类、注气量、气体扩散模型、二元相互作用系数等方面的不足。进而对多元热复合流体相态研究提出展望,以期促进热复合开采技术进一步的机理研究与参数优化。  相似文献   

9.
胜利油区稠油油藏注蒸汽热采后储层物性变化特征   总被引:6,自引:5,他引:1  
将胜利油区稠油油藏在不同开发方式、不同开发阶段完钻的热采密闭取心井岩心分析资料,与邻近或相同沉积条件下的老取心井的岩心分析资料进行对比,探讨了碎屑岩稠油油藏储层参数经过注蒸汽热采后的变化特点、变化机理及其对开发效果的影响;总结了稠油注蒸汽热采与常规注水开采后的储层特性变化异同点,为稠油热采过程中制定改善储层渗流条件、提高油藏采收率的对策或措施提供了依据。  相似文献   

10.
热采过程中硫化氢成因机制   总被引:7,自引:0,他引:7  
为了防范稠油油藏注蒸汽开采过程中井口产出硫化氢所造成的安全隐患,增强热采油井安全生产水平,亟需对稠油热采过程中硫化氢的来源及成因机制开展相关实验研究。对辽河小洼油田洼38区块的岩心、原油和产出水3种不同物质开展了含硫量测定、硫同位素分析和H2S生成热模拟实验。实验研究结果表明:稠油热采中生成的硫化氢主要来源于岩心和稠油;在硫同位素分馏过程中,形成硫化物(H2S)的δ34S反映了硫酸盐热化学还原过程中硫在较高温度下的分馏特征;硫化氢的生成机理主要为高温高压酸性环境下稠油水热裂解和硫酸盐热化学还原之间的交互作用。  相似文献   

11.
项林峰  钟宏 《石油化工》2006,35(11):1074-1077
以甲醇水溶液为溶剂、过硫酸钾和乙二胺为氧化还原引发剂、十二硫醇为链转移剂、丙烯酸和丙烯酸甲酯为单体进行自由基聚合制备了低相对分子质量聚丙烯酸钠。通过均匀设计实验得出聚合过程中各因素对产品相对分子质量的影响顺序为:过硫酸钾用量>十二硫醇用量>聚合温度>过硫酸钾与乙二胺的摩尔比。在过硫酸钾质量分数3.5%、过硫酸钾与乙二胺摩尔比1∶1、聚合温度75℃、十二硫醇质量分数3.72%、丙烯酸与丙烯酸甲酯摩尔比4.0的条件下制备了相对分子质量为1244、可作为分散剂使用的聚丙烯酸钠。同时,对聚丙烯酸钠进行肟化改性,制备出具有鳌合金属离子性能的功能型共聚物,并通过红外光谱对聚丙烯酸钠和肟化改性聚丙烯酸钠的结构进行了分析。  相似文献   

12.
Based on the thermal simulation experiments of shale and crude oil samples, the amount of gas generated from kerogen and oil cracking during each geological period was calculated based on the chemical kinetic method. The results showed that the total amount of gas generated from the Niutitang Shale in Hy1 well is 49.00 m3/t, including gas generated from kerogen (17.76 m3/t) and gas generated from oil cracking (31.24 m3/t). The period of gas generated from kerogen is from the Cambrian to the Carboniferous with amount of gas generated value of 14.77 m3/t, which is mainly from the Lower Ordovician to the Middle Ordovician (510–470 Ma). The period of gas generated from oil cracking is from the Ordovician to the Triassic, and the main period of gas generated from oil cracking is from the Lower Devonian to the Upper Permian (410–250 Ma). The amounts of gas generated from oil cracking are 13.30 m3/t, 9.44 m3/t, and 3.77 m3/t in the Devonian, Carboniferous, and Permian, respectively.  相似文献   

13.
目的 为了解决塔河油田高含有机硫油田伴生气中有机硫脱除的难题,进行油田伴生气加工过程中甲硫醇分布模拟及工艺优化研究。方法 采用Aspen Plus和HYSYS软件模拟计算了MDEA溶剂胺洗脱硫后油田伴生气进一步分离得到干气、液化气和轻烃产品中甲硫醇的分布。针对液化气中总硫含量超标的问题,提出工艺优化方案并在工业装置上实施,考查优化效果。结果 甲硫醇的富集是造成液化气产品中总硫含量超标的主要因素。模拟计算结果表明,通过方案二与方案三的组合,可将液化气中甲硫醇质量浓度由470.44 mg/m3降至240.14 mg/m3,总硫质量浓度(以硫计)为272.94 mg/m3。结论 工业装置实施改造后,液化气产品中总硫质量浓度可控制在330 mg/m3以下,达到GB 11174-2011《液化石油气》规定的液化气产品中总硫含量控制指标。  相似文献   

14.
The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oil. The H2S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H2S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO42− in the injected compounds is the most influencing factor for the rate of TSR reaction. Therefore, for prevention of H2S formation, periodic and effective monitoring should be undertaken and adequate H2S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO42− source in heavy oil recovery, so as to restrain H2S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H2S levels. Prediction and prevention of H2S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion.  相似文献   

15.
酸性水罐区是炼油厂最大的污水罐区,排放气中含有高浓度H2S,NH3,有机硫化物、油气、水蒸气和空气,直接排放导致空气恶臭污染严重且浪费油气资源。采用来水脱气罐、罐顶气连通管网、减少罐内气相空间体积、将排水高峰安排在夜间等措施,可减排气体50%以上。采用罐内气相空间惰性气保护,可防止硫化亚铁自燃引发火灾事故。罐区排放气采用"低温粗柴油吸收-碱液吸收"工艺,粗柴油来自催化裂化分馏塔或常压塔,富吸收油进加氢装置处理;采用氢氧化钠或氨水吸收H2S时,废吸收液进酸性水罐处理;采用醇胺吸收液时,富吸收液进再生系统。该工艺的H2S、有机硫化物回收率接近100%;NH3回收率60%~90%;油气回收率可达95%以上;净化气体中的油气质量浓度小于25 g/m3;H2S,NH3、甲硫醇、甲硫醚、二甲二硫排放量小于GB 14554—93《恶臭污染物排放标准》。  相似文献   

16.
 系统地监测和评价了某典型炼油厂各类储罐排放气、污水处理场逸散气及氧化脱硫醇尾气等主要恶臭污染源,估算了臭气浓度和总烃、苯系物、臭味排放量。结果表明:上述恶臭污染源非甲烷烃、苯、甲苯和二甲苯、硫化氢、甲硫醇、乙硫醇和二甲二硫等污染物均有不同程度的超标,浓度超标比排放量超标严重;污染物和污染源按排放量可各分为三类,一类的恶臭污染物为硫化氢,其臭味排放贡献约占67.9%;二类恶臭污染物为甲硫醇、乙硫醇、异丙硫醇、二甲二硫、甲乙二硫和二乙二硫,臭味排放贡献合计约占31.8%;三类恶臭污染物为苯系物,臭味排放贡献合计仅占0.3%。一类的恶臭污染源为酸性水罐废气,其臭味排放贡献约为57.1%;二类恶臭污染源为污水处理场、高温蜡油罐和污油罐废气,臭味排放贡献合计约占37.3%;三类恶臭污染源为碱渣罐、冷焦水罐、油品中间罐和氧化脱硫醇废气,臭味排放贡献合计约占5.6%。主要恶臭污染源总烃和苯系物排放总量分别约为261 kg/h和23.8 kg/h,其中污水处理场、酸性水罐及氧化脱硫醇合计约占总烃排放量的三分之二,污水处理场和冷焦水罐合计约占苯系物排放量的三分之二。  相似文献   

17.
炼油装置停工检修脱臭剂YJ-02的开发与工业应用   总被引:1,自引:1,他引:0  
炼油装置在油品加工过程中普遍存在较高含硫、含氮污水,在装置停工检修时,污水中挥发的恶臭物质会严重影响周围环境、延长检修时间。针对上述问题,研制了处理炼油装置停工时残留恶臭的脱臭剂YJ-02,并在炼油装置上进行了工业应用,结果表明该脱臭剂具有较好的消除硫化氢、氨、硫醇和二硫化物的效果。YJ-02脱臭剂对硫化氢的反应迅速完全,反应时间为2~4h,对较高浓度的二甲基二硫化物、甲乙基二硫化物、甲硫醇、乙硫醇的除臭时间小于12h量,反应后的污水pH值为6~8,反应后污水上方没有硫化物,氨气等恶臭物检出。  相似文献   

18.
以正构烷烃、萜烷生物标志物、多环芳烃和芳香噻吩系列作为特征化合物,采用GC-MS方法对渣油原料KWTVR、QLVR和THAR分别在3种接触剂A、B和C作用下的裂化产物进行分析。结果表明,9种产物中特征化合物分布差异明显,其分布受渣油原料和接触剂类型影响。3种渣油原料中QLVR的接触裂化改质效果最好,B剂最适合用作渣油预处理改质的接触剂。萜烷生物标志物的特殊分子结构对热作用和催化作用类型比较敏感,可指示反应的类型以及裂化反应的深度。对于同种渣油原料,产物中多环芳烃和噻吩系列的分布情况与接触裂化所使用的接触剂的活性强弱顺序有对应关系。由渣油接触裂化重馏分油产物中特征化合物的分布情况可推测渣油接触裂化反应路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号