首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以盾构刀盘驱动系统实验平台为研究对象,基于AMESim仿真软件构建该实验台泵控马达液压控制系统的仿真模型,通过分析变载荷条件下刀盘转速的动态响应特性,来验证刀盘驱动实验系统的载荷顺应能力和多马达同步控制性能,并基于所设计实验平台进行相关实验研究,结果证明所设计液压系统满足预期控制要求.  相似文献   

2.
对铺轨机行走液压驱动控制技术进行了研究。铺轨机行走牵引车由履带牵引车和轮轨牵引车以铰接方式联接,其行走液压驱动系统包括履带泵控马达系统和轮轨泵控马达系统两部分。行走液压系统的控制目标是在不同工况下实现对给定速度的跟踪和两套泵控马达系统所提供的牵引力保持给定的匹配关系。文中首先分析了行走系统的控制特性,根据控制目标提出了基于牵引力和马达排量的前馈式PID的速度和力复合控制策略,在仿真中分别采用了基于常规PID和模糊PID的控制,并对仿真结果进行了分析。  相似文献   

3.
介绍了泵控马达变转速调速实验系统的组成,推导了变频器及电机的数学模型,根据数学模型在AMESim中构建了变频器及电机的仿真模型,并与液压系统回路仿真模型相结合,从而在AMESim中建立了泵控马达变转速调速系统的仿真模型,并对系统的开环及闭环PID特性进行了仿真分析,通过仿真分析,得到了有益的结论。  相似文献   

4.
盾构刀盘驱动液压系统具有功率大、功率变化范围宽的特点,文章介绍全局功率自适应的泵控马达系统的工作原理,通过在模拟盾构实验台上的掘进实验,证明该系统能适应掘进中的复杂工况,系统节能效果好。  相似文献   

5.
探索了采用蓄能器组来有效抑制液压牵引工程车辆压力冲击的方法,建立了泵控马达调节系统加入蓄能器组后的数学模型, 从而为液压牵引车辆中蓄能器的选择和匹配,以及深入研究泵控马达系统调速特性和动态特性在有无蓄能器情况下的不同提供了参考;以液压底盘实验台为例进行仿真,结果表明理论分析是可行的。  相似文献   

6.
介绍了泵控马达变转速节流复合调速系统的工作原理及结构,建立了系统的AMEsim-Simulink的联合仿真模型,提出了泵控马达变转速节流复合调速系统的控制策略,并进行了仿真分析。  相似文献   

7.
以泵控马达变转速变排量复合容积调速液压系统为研究对象,完成了其监控平台的设计。在介绍系统工作原理及监控平台设计思路的基础上,结合LabVIEW技术,完成了监控平台软件开发。运行结果表明:该平台对模拟量数据及串口数据进行统一采集、保存及处理,并通过变转速、变排量方式实现泵控马达液压系统的无级调速,以及通过调节比例溢流阀实现电液负载模拟加载。监控平台人机界面友好,运行可靠,具有良好的开放性和可扩展性,能更好地满足液压系统动态参数监测和自动控制的需要。  相似文献   

8.
盾构掘进机及其液压技术的应用   总被引:33,自引:1,他引:33  
简要介绍了盾构掘进机及其发展趋势。就液压技术在盾构驱动及控制上的应用提出了可能的途径,如:变转速泵控马达、负载敏感等技术的应用,不仅在节能的同时可望解决长期困扰盾构施工的发热问题。  相似文献   

9.
针对应用于隧道管片运输车上的闭式泵控马达静液驱动系统,为了使车辆能够适应具有一定坡度的长距离下坡工况,设计了一套由定量泵、比例溢流阀构成的液压缓速持续制动装置嵌入到液压驱动行走系统中,以弥补车辆长时间采用刹车制动造成刹车片过热因而易导致刹车失灵的缺陷;推导了通过控制缓速制动液压系统压力对闭式泵控马达驱动系统实现速度控制的数学模型,提出了对马达速度的稳速控制策略;同时,对此设计方案进行了仿真分析,并采用泵控单个马达搭建了最小实验系统进行了实验验证。仿真和实验结果表明,所设计的液压缓速系统能够稳定、可靠地实现在下坡工况下对车辆的缓速制动控制。  相似文献   

10.
针对泵控马达变转速节流复合调速系统实验台,运用LabVIEW开发了具备远程测控功能的液压调速综合控制平台.利用该控制系统对液压实验台进行远程调速模式下的实验研究,结果表明,在远程控制条件下,复合调速具有较优良的控制特性,该方案基本满足了实际应用需求.  相似文献   

11.
变频泵控马达调速系统遗传算法PID控制   总被引:1,自引:0,他引:1  
提出了基于遗传算法的变频泵控马达调速系统的PID参数寻优方法。仿真结果证明了遗传算法寻优后的PID控制器较常规PID控制器具有更好的控制特性,对模型失配和负载扰动表现出更强的适应性和鲁棒性,很适合具有慢时变和存在负载扰动的变频泵控马达调速系统的控制。也指出了用遗传算法寻优变频泵控马达调速系统PID参数的局限性。  相似文献   

12.
变转速泵控马达调速系统前馈补偿控制研究   总被引:1,自引:0,他引:1  
针对变转速泵控马达调速系统稳速控制问题,建立了定量泵-变量马达调速系统数学模型。以数学模型为基础,考虑了系统变转速动力输入时变性和随机性对系统稳速输出的干扰,提出了前馈补偿控制方法,并对其数学模型进行了推导分析,得到了系统前馈补偿控制传递函数框图。该方法以系统流量为中间控制变量,通过定量泵扰动转速引起的系统流量变化实时补偿变量马达摆角,以实现系统稳速输出。以燕山大学泵控马达实验平台为基础,采用变频电机驱动定量泵实现了系统变转速输入,并以实验平台为基础搭建了Matlab/Simulink仿真平台,最后对所提出的前馈补偿控制方法进行了仿真与实验研究。仿真和实验结果表明,所提出的控制方法具有良好的控制效果,为变转速泵控马达系统的工程应用奠定了基础。  相似文献   

13.
针对全断面掘进机综合试验台中盾构试验样机刀盘驱动系统的工作要求,设计了变量泵控变量马达刀盘驱动液压调速系统。液压系统采用高低速两档控制方式,低速档恒转矩控制,高速档恒功率控制。基于液压仿真软件AMESim对所设计系统进行了建模仿真,分析和比较了驱动系统在高低速工况下的调速特性,结果表明在高转速工况采用变量马达实现无级调速控制可有效增大刀盘在高扭矩下的转速调节范围,更大限度满足盾构掘进要求。  相似文献   

14.
针对全断面掘进机综合试验台中盾构试验样机刀盘驱动系统的工作要求,设计了变量泵控变量马达刀盘驱动液压调速系统.液压系统采用高低速两档控制方式,低速档恒转矩控制,高速档恒功率控制.基于液压仿真软件AMESim对所设计系统进行了建模仿真,分析和比较了驱动系统在高低速工况下的调速特性,结果表明在高转速工况采用变量马达实现无级调速控制可有效增大刀盘在高扭矩下的转速调节范围,更大限度满足盾构掘进要求.  相似文献   

15.
为了更好地控制阀控马达系统的转速,运用AMESim和Simulink软件建立了阀控液压马达系统的数学模型,并进行联合仿真。同时对液压马达的调速控制采用参数自整定的模糊自适应PID控制策略来实现。仿真结果表明,与传统PID控制相比,在阀控马达调速系统中,模糊自适应PID控制策略下的系统响应速度更快,超调量小,抗干扰能力更强,有更好的鲁棒性。  相似文献   

16.
变转速泵控马达系统转速降落补偿试验研究   总被引:3,自引:0,他引:3  
分析变转速泵控马达调速系统产生转速降落的原因,指出系统泄漏、电动机机械特性和因系统压力变化带来的油液压缩性均能引起马达转速降落。给出基于系统压力反馈的转速降落补偿控制框图,推导出因系统泄漏和电动机机械特性引起转速降落的补偿系数和因油液压缩性引起转速降落的补偿系数。对变转速泵控马达调速系统,编制LabVIEW测控程序,在此基础上分别进行恒负载、变负载和变转速情况的转速降落补偿试验,由理论分析和试验结果得出了不同工况下的转速降落补偿方法,达到了在不同工况下变转速泵控马达调速系统转速降落补偿的目的。  相似文献   

17.
随着电液比例控制技术和泵控马达系统的应用的迅速发展,为了使液压系统能够满足生产过程对系统性能的更高要求,必须提高液压系统的响应特性及工作可靠性,而建立系统的精确模型则是进一步改进和完善系统设计的基础。利用长安大学电液比例压力——流量控制实验台上进行的所得实验数据、结合Matlab软件、运用ARMAX模型辨识方法对电液比例泵控马达系统进行了实验辨识,并对系统施加控制策略进行了仿真分析。  相似文献   

18.
针对液压系统在极端工况下非线性特性明显,运行稳定性差的问题,采用了AMESim多学科仿真软件,对多能域耦合闭式液压系统进行了物理建模,通过对典型闭式泵控马达液压系统模型的仿真分析,研究了在不同油液含气量及温度工况下,油液粘度与有效体积弹性模量的变化对闭式泵控马达液压系统稳定性的影响规律;同时,进一步设计了机电液一体化实...  相似文献   

19.
针对电液比例泵控马达系统,为了实现马达的恒速控制,采用了参数可自整定的模糊PID控制策略;通过分析泵控马达系统的工作原理以及该系统的调速原理,设计了模糊PID控制器,然后运用Simulink仿真工具,建立了泵控马达系统的仿真模型和给出了仿真结果。结果表明,外界干扰作用下,模糊PID控制的确比常规PID控制在实现马达恒转速控制上具有更好的动态响应特性。  相似文献   

20.
以泵控马达调速系统为研究对象,建立定量泵-变量马达调速系统数学模型。针对系统负载扰动的随机不可控性,提出了负载扰动补偿控制方法。通过负载扰动观测,依据系统结构不变性原理实时补偿变量马达摆角,实现系统的转速控制。通过燕山大学泵控马达实验平台对所提出的负载扰动补偿控制方法进行仿真与实验研究。仿真和实验结果表明所提出控制方法提高了系统的鲁棒性和控制性能,具有较高的控制精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号