首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cDNA sequences encompassing the full coding region for the human muscle acetylcholine receptor (AChR) epsilon and gamma subunits have been isolated. The deduced amino-acid sequences indicate that the mature epsilon subunit contains 473 amino acids and is preceded by a 20-amino-acid signal peptide. As predicted from genomic clones, the gamma subunit contains 495 amino acids preceded by a 22-amino-acid signal peptide. In common with the human alpha, beta, gamma and delta subunits the epsilon subunit is highly conserved between mammalian species. The epsilon subunit gene is not closely linked to the gamma and delta subunits on chromosome 2 but rather is located with the beta subunit on chromosome 17. Expression of the alpha-, beta-, gamma-, delta- and epsilon-subunit cRNAs in rabbit-reticulocyte lysates followed by analysis on SDS/PAGE show glycosylated proteins with apparent molecular masses of 44-60 kDa.  相似文献   

2.
Specific mgi mutations in the alpha, beta or gamma subunits of the mitochondrial F1-ATPase have previously been found to suppress rho0 lethality in the petite-negative yeast Kluyveromyces lactis. To determine whether the suppressive activity of the altered F1 is dependent on the F0 sector of ATP synthase, we isolated and disrupted the genes KlATP4, 5 and 7, the three nuclear genes encoding subunits b, OSCP and d. Strains disrupted for any one, or all three of these genes are respiration deficient and have reduced viability. However a strain devoid of the three nuclear genes is still unable to lose mitochondrial DNA, whereas a mgi mutant with the three genes inactivated remains petite-positive. In the latter case, rho0 mutants can be isolated, upon treatment with ethidium bromide, that lack six major F0 subunits, namely the nucleus-encoded subunits b, OSCP and d, and the mitochondrially encoded Atp6, 8 and 9p. Production of rho0 mutants indicates that an F1-complex carrying a mgi mutation can assemble in the absence of F0 subunits and that suppression of rho0 lethality is an intrinsic property of the altered F1 particle.  相似文献   

3.
We have studied the change of the catalytic activity of chimeric complexes that were formed by chloroplast coupling factor 1 (CF1) -gamma, alpha and beta subunits of thermophilic bacterial F1 after formation or reduction of the disulfide bridge of different gamma subunits modified by oligonucleotide-directed mutagenesis techniques. For this purpose, three mutant gamma subunits were produced: gamma Delta194-230, here 37 amino acids from Pro-194 to Ile-230 are deleted, gammaC199A, Cys-199 is changed to Ala, and gamma Delta200-204, amino acids from Asp-200 to Lys-204 are deleted. All of the chimeric subunit complexes produced from each of these mutant CF1-gamma subunits and alpha and beta subunits from thermophilic bacterial F1 lost the sensitivity against thiol reagents when compared with the complex containing wild-type CF1-gamma. The pH optimum (pH 8.5-9.0) and the concentration of methanol to stimulate ATPase activities were not affected by these mutations. These indicate that the introduction of the mutations did not change the main features of ATPase activity of the chimeric complex. However, the interaction between gamma subunit and epsilon subunit was strongly influenced by the type of gamma subunit itself. Although the ATPase activity of the chimeric complex that contained gamma Delta200-204 or gammaC199A was inhibited by the addition of recombinant epsilon subunit from CF1 similarly to complexes containing the reduced wild-type gamma subunit, the recombinant epsilon subunit did not inhibit the ATPase of the complex, which contained the oxidized form of gamma subunit. Therefore the affinity of the epsilon subunit to the gamma subunit may be dependent on the state of the gamma subunit or the epsilon subunit may bind to the oxidized form of gamma subunit in a mode that does not inhibit the activity. The ATPase activity of the complex that contains gamma Delta194-230 was not efficiently inhibited by epsilon subunit. These results show that the formation or reduction of the disulfide bond on the gamma subunit may induce a conformational change in the region that directly affects the interaction of this subunit with the adjacent epsilon subunit.  相似文献   

4.
Acetylcholine receptor (AChR) channels with proline (P) mutations in the putative pore-forming domain (at the 12' position of the M2 segment) were examined at the single-channel level. For all subunits (alpha, beta, epsilon, and delta), a 12'P mutation increased the open channel lifetime >5-fold. To facilitate the estimation of binding and gating rate constants, subunits with 12'P mutations were co-expressed with alpha subunits having a binding site mutation that slows channel opening (alphaD200N). In these AChRs, a 12'P mutation in epsilon or beta slowed the closing rate constant approximately 6-fold but had no effect on either the channel opening rate constant or the equilibrium dissociation constant for ACh (Kd). In contrast, a 12'P mutation in delta slowed the channel closing rate constant only approximately 2-fold and significantly increased both the channel opening rate constant and the Kd. Pairwise expression of 12'P subunits indicates that mutations in epsilon and beta act nearly independently, but one in delta reduces the effect of a homologous mutation in epsilon or beta. The results suggest that a 12'P mutation in epsilon and beta has mainly local effects, whereas one in delta has both local and distributed effects that influence both agonist binding and channel gating.  相似文献   

5.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

6.
Escherichia coli ATP synthase has eight subunits and functions through transmission of conformational changes between subunits. Defective mutation at beta Gly-149 was suppressed by the second mutations at the outer surface of the beta subunit, indicating that the defect by the first mutation was suppressed by the second mutation through long range conformation transmission. Extensive mutant/pseudorevertant studies revealed that beta/alpha and beta/gamma subunits interactions are important for the energy coupling between catalysis and H+ translocation. In addition, long range interaction between amino and carboxyl terminal regions of the gamma subunit has a critical role(s) for energy coupling. These results suggest that the dynamic conformation change and its transmission are essential for ATP synthase.  相似文献   

7.
Mutants of ECF1-ATPase were generated, containing cysteine residues in one or more of the following positions: alphaSer-411, betaGlu-381, and epsilonSer-108, after which disulfide bridges could be created by CuCl2 induced oxidation in high yield between alpha and epsilon, beta and epsilon, alpha and gamma, beta and gamma (endogenous Cys-87), and alpha and beta. All of these cross-links lead to inhibition of ATP hydrolysis activity. In the two double mutants, containing a cysteine in epsilonSer-108 along with either the DELSEED region of beta (Glu-381) or the homologous region in alpha (Ser-411), there was a clear nucleotide dependence of the cross-link formation with the epsilon subunit. In betaE381C/epsilonS108C the beta-epsilon cross-link was obtained preferentially when Mg2+ and ADP + Pi (addition of MgCl2 + ATP) was present, while the alpha-epsilon cross-link product was strongly favored in the alphaS411C/epsilonS108C mutant in the Mg2+ ATP state (addition of MgCl2 + 5'-adenylyl-beta,gamma-imidodiphosphate). In the triple mutant alphaS411C/betaE381C/epsilonS108C, the epsilon subunit bound to the beta subunit in Mg2+-ADP and to the alpha subunit in Mg2+-ATP, indicating a significant movement of this subunit. The gamma subunit cross-linked to the beta subunit in higher yield in Mg2+-ATP than in Mg2+-ADP, and when possible, i.e. in the triple mutant, always preferred the interaction with the beta over the alpha subunit.  相似文献   

8.
The yeast KRE9 gene encodes a 30-kDa secretory pathway protein involved in the synthesis of cell wall (1-->6)-beta-glucan. Disruption of KRE9 leads to serious growth impairment and an altered cell wall containing less than 20% of the wild-type amount of (1-->6)-beta-glucan. Analysis of the glucan material remaining in a kre9 delta null mutant indicated a polymer with a reduced average molecular mass. kre9 delta null mutants also displayed several additional cell-wall-related phenotypes, including an aberrant multiply budded morphology, a mating defect, and a failure to form projections in the presence of alpha-factor. Double mutants were generated by crossing kre9 delta strains with strains harboring a null mutation in the KRE1, KRE6, or KRE11 gene, and each of these double mutants was found to be inviable in the SEY6210 background. Similar crosses with null mutations in the KRE5 and SKN1 genes indicated that these double mutants were no more severely affected than kre5 delta or kre9 delta single mutants alone. Antibodies were generated against Kre9p and detected an O glycoprotein of approximately 55 to 60 kDa found in the extracellular medium of a strain overproducing Kre9p.  相似文献   

9.
We have analyzed the cytolytic activity of freshly isolated intraepithelial T cells (i-IEL) from the intestines of several different mouse strains in an anti-T-cell receptor monoclonal antibody-mediated redirected lysis assay. The cytolytic activity of gamma delta i-IEL but not that of alpha beta i-IEL was strain dependent. Mouse strains could be divided into high (H), marginal (M), and null (N) strains. The anti-gamma delta T-cell receptor monoclonal antibody-induced interferon gamma production showed the same strain-dependent variability, but the proliferative responses to gamma delta T-cell receptor crosslinking did not show this variability. The N phenotype of gamma delta i-IEL was found to be dominant in (H x N)F1 mice. In radiation bone-marrow chimeras the H/N phenotype was determined by the genotype of the reconstituting bone-marrow-derived cells but was not determined by the genotype of the radioresistant host cells. Analysis of (H x N)F1 backcross animals indicated that at least two genes are involved in determination of the H/N phenotype. One of these genes is major-histocompatibility-complex linked. No difference in the use of the variable region segment of the gamma-chain or delta-chain was seen between the gamma delta i-IEL from H and N strains. Various models that might explain the strain-dependent gamma delta i-IEL phenotypes are discussed.  相似文献   

10.
We describe the development and function of the peripheral lymphoid system of mutant mice rendered deficient in either alpha beta or gamma delta T cells via targeting of TCR genes in embryonic stem cells. In the spleen of alpha beta T cell-deficient mice, gamma delta T cells do not compensate in numbers for the lack of alpha beta T cells, but B cells do. alpha beta T cell-deficient mice are unable to mount an antibody response to ovalbumin and do not reject skin allografts. Natural killer cell function is not impaired in any of the mutant mice. TCR mutant mice will prove useful in dissecting differential functions of alpha beta and gamma delta T cells in vivo.  相似文献   

11.
The TCR-associated CD3 complex consists of four subunits, i.e. CD3 gamma, delta, epsilon and zeta, which are expressed very early in T cell development prior to the expression of the TCR and the pre-TCR alpha chain. It is unclear whether the expression of each CD3 protein is independent of, or is influenced by, other CD3 subunits. To study whether CD3 epsilon regulates expression of CD3 gamma and delta genes, we generated a strain of CD3 epsilon-deficient mice termed CD3 epsilon(delta P/delta P) (epsilon(delta P)), in which the promoter of CD3E was disrupted, and subsequently reconstituted these mice with a CD3 epsilon transgene. In the epsilon(delta P) mice, T cell development is arrested at the double-negative stage and targeting the CD3 epsilon gene caused severe inhibition of CD3 gamma and delta gene expression. Introduction of the CD3 epsilon transgene did not restore CD3 gamma and delta expression. However, a very small fraction of prothymocytes that expressed CD3 gamma and delta was rescued upon reconstitution of the CD3 epsilon transgene. Remarkably, this rescue led to a very efficient differentiation and maturation of thymocytes, resulting in a significant T cell population in the periphery. These results demonstrate that CD3 epsilon does not regulate expression of CD3 gamma and delta genes, and underscore the capacity of each prothymocyte to give rise to a large number of mature peripheral T cells.  相似文献   

12.
Two families of nuclear receptors for retinoic acid (RA) have been characterized. Members of the RAR family (types alpha, beta and gamma and their isoforms alpha 1, alpha 2, beta 1 to beta 4, and gamma 1 and gamma 2) are activated by most physiologically occurring retinoids (all-trans RA, 9-cis RA, 4oxo RA and 3,4 dihyroRA). In contrast, members of the RXR family (types alpha, beta and gamma and their isoforms) are activated by 9cis-RA only. In addition to the multiplicity of receptors, the complexity of retinoid signalling is further increased by the fact that, at least in vitro, RARs bind to their cognate response elements as heterodimers with RXRs. Moreover, RXRs can also bind, in vitro, to some DNA elements as homodimers, and are heterodimeric partners for other nuclear receptors, including TRs, VDR, PPARs and a number of orphan nuclear receptors. To evaluate the functions of the different RARs and RXRs types and isoforms, we have generated null mutant mice by targeted gene disruption in ES cells. As to the functions of RARs, we found that RAR alpha 1 and RAR gamma 2 null mutant mice are apparently normal. Mice deficient in RAR alpha or RAR gamma (i.e., all alpha or gamma isoforms disrupted) show aspects of the post-natal vitamin A deficiency (VAD) syndrome which can be cured or prevented by RA, including post-natal lethality, poor weight gain and male sterility. RAR beta 2 (and RAR beta) null mutants display a retrolenticular membrane which represents the most frequent defect of the fetal VAD syndrome. That these abnormalities were restricted to a small subset of the tissues normally expressing these receptors suggested that some degree of functional redundancy should exist in the RAR family. To test this hypothesis we then generated RAR double null mutants. RAR alpha beta, RAR alpha gamma and RAR beta gamma compound mutants exhibit all the malformations of the fetal VAD syndrome, thus demonstrating that RA is the vitamin A derivative which plays a crucial role at many different stages and in different structures during organogenesis. Interestingly, almost all the structures derived from mesenchymal neural crests cells (NCC) are affected in RAR compound mutants. As to the functions of RXRs, RXR gamma null mutants are viable, fertile and morphologically normal. In contrast, RXR alpha null fetuses display a thin ventricular wall and die in utero from cardiac failure. A myocardial hypoplasia has also been observed in some RAR compound mutants as well as in VAD fetuses. Thus, RXR alpha seems to act as an inhibitor of ventricular cardiocyte differentiation and/or as a positive regulator of their proliferation, and these functions might involve heterodimerization with RARs and activation by RA. RXR beta null mutants are viable but the males are sterile, most probably because of an abnormal lipid metabolism in the Sertoli cells. New abnormalities, absent in RXR alpha mutants, are generated in RXR alpha/RAR (alpha, beta or gamma) compound mutants. All these abnormalities are also seen in RAR double mutants as well as in VAD fetuses. In contrast, such manifestations of synergism are not observed between the RXR beta or RXR gamma and the RAR (alpha, beta or gamma) null mutations. These data strongly support the conclusion that RXR alpha/RAR heterodimers represent the main functional units of the RA signalling pathway during embryonic development. Moreover, since RXR gamma-/-/RXR beta-/-/RXR alpha +/-mutants are viable, a single allele of RXR alpha can perform most of the developmental RXR functions.  相似文献   

13.
Contact sensitivity (CS) responses to reactive hapten antigens (Ag), such as picryl chloride, are classical examples of T-cell-mediated immune responses in vivo. There is also abundant evidence that T cells exposed in vivo to high intravenous doses of Ag can downregulate CS (high-dose Ag tolerance). To clarify cell types that effect CS and mediate its downregulation, we have studied CS in mice congenitally deficient in alpha/beta T cells (alpha-/- mice). We show that alpha-/- mice cannot mount CS, implicating alpha/beta T cells as critical CS effector cells. However, after high-dose Ag tolerization, these alpha-/- mice can downregulate alpha/beta CS effector cells adoptively transferred to them. The active cells in tolerized alpha-/- mice are gamma/delta TCR+ cells which downregulate CS effector alpha/beta T cells Ag-specifically upon adoptive cell transfer. Moreover, gamma/delta cells can Ag-specifically downregulate IFN-gamma production by CS effector cells in vitro. These findings establish that gamma/delta T cells are not CS effector cells but downregulate CS, in agreement with recent reports that gamma/delta T cells downregulate IgE responses.  相似文献   

14.
T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.  相似文献   

15.
T cell antigen receptor (TCR) and pre-TCR complexes are composed of clonotypic heterodimers in association with dimers of signal transducing invariant subunits (CD3gamma, -delta, -epsilon, and zeta). The role of individual invariant subunits in T cell development has been investigated by generating gene-specific mutations in mice. Mutation of CD3gamma, -delta, or zeta results in an incomplete block in development, characterized by reduced numbers of mature T cells that express low levels of TCR. In contrast, mature T cells are absent from CD3epsilon-/- mice, and thymocyte development is arrested at the early CD4(-)CD8(-) stage. Although these results suggest that CD3epsilon is essential for pre-TCR and TCR expression/function, their interpretation is complicated by the fact that expression of the CD3gamma and CD3delta genes also is reduced in CD3epsilon-/- mice. Thus, it is unclear whether the phenotype of CD3epsilon-/- mice reflects the collective effects of CD3gamma, -delta, and -epsilon deficiency. By removing the selectable marker (PGK-NEO) from the targeted CD3epsilon gene via Cre/loxP-mediated recombination, we generated mice that lack CD3epsilon yet retain normal expression of the closely linked CD3gamma and CD3delta genes. These (CD3epsilonDelta/Delta) mice exhibited an early arrest in T cell development, similar to that of CD3epsilon-/- mice. Moreover, the developmental defect could be rescued by expression of a CD3epsilon transgene. These results identify an essential role for CD3epsilon in T cell development not shared by the CD3gamma, CD3delta, or zeta-family proteins and provide further evidence that PGK-NEO can influence the expression of genes in its proximity.  相似文献   

16.
A high temperature, high-speed adiabatic calorimeter was used to measure the heat content of alloys in the copper-zinc system. These measurements were then used, along with the results of other investigators, in calculating thermodynamic properties of copperzinc alloys. These included: heats of formation of liquid copper-zinc alloys, of alpha, beta, gamma, and epsilon phases at different temperatures, and of delta phase at 900 K (which was not available in literature), and excess entropies of formation for the alpha, beta prime, gamma, epsilon phases and the heat effect for the beta-beta prime transformation.  相似文献   

17.
Cross-linking studies on the Escherichia coli F0F1-ATP synthase indicated a site of interaction involving gamma and epsilon subunits in F1 and subunit c in F0 (Watts, S. D., Tang, C., and Capaldi, R. A. (1996) J. Biol. Chem. 271, 28341-28347). To assess the function of these interactions, we introduced random mutations in this region of the gamma subunit (gamma194-213). One mutation, gammaGlu-208 to Lys (gammaE208K), caused a temperature-sensitive defect in oxidative phosphorylation-dependent growth. ATP hydrolytic rates of the gammaE208K F0F1 enzyme became increasingly uncoupled from H+ pumping above 28 degreesC. In contrast, Arrhenius plot of steady-state ATP hydrolysis of the mutant enzyme was linear from 20 to 50 degreesC. Analysis of this plot revealed a significant increase in the activation energy of the catalytic transition state to a value very similar to soluble, epsilon subunit-inhibited F1 and suggested that the mutation blocked normal release of epsilon inhibition of ATP hydrolytic activity upon binding of F1 to F0. The difference in temperature dependence suggested that the gammaE208K mutation perturbed release of inhibition via a different mechanism than it did energy coupling. Suppressor mutations in the polar loop of subunit c restored ATP-dependent H+ pumping and transition state thermodynamic parameters close to wild-type values indicating that interactions between gamma and c subunits mediate release of epsilon inhibition and communication of coupling information.  相似文献   

18.
Intersubunit rotation in active F-ATPase   总被引:1,自引:0,他引:1  
The enzyme ATP synthase, or F-ATPase, is present in the membranes of bacteria, chloroplasts and mitochondria. Its structure is bipartite, with a proton-conducting, integral membrane portion, F0, and a peripheral portion, F1. Solubilized F1 is composed of five different subunits, (alpha beta)3 gamma delta epsilon, and is active as an ATPase. The function of F-ATPase is to couple proton translocation through F0 with ATP synthesis in F1 (ref.3). Several lines of evidence support the spontaneous formation of ATP on F1 (refs 4,5) and its endergonic release at cooperative and rotating (or at least alternating) sites. The release of ATP at the expense of protonmotive force might involve mechanical energy transduction from F0 into F1 by rotation of the smaller subunits (mainly gamma) within (alpha beta)3, the catalytic hexagon of F1 as suggested by electron microscopy, by X-ray crystal structure analysis and by the use of cleavable crosslinkers. Here we record an intersubunit rotation in real time in the functional enzyme by applying polarized absorption relaxation after photobleaching to immobilized F1 with eosin-labelled gamma. We observe the rotation of gamma relative to immobilized (alpha beta)3 in a timespan of 100 ms, compatible with the rate of ATP hydrolysis by immobilized F1. Its angular range, which is of at least 200 degrees, favours a triple-site mechanism of catalysis, with gamma acting as a crankshaft in (alpha beta)3. The rotation of gamma is blocked when ATP is substituted with its non-hydrolysable analogue AMP-PNP.  相似文献   

19.
G proteins transmit signals from cell surface receptors to intracellular effectors. The intensity of the signal is governed by the rates of GTP binding (leading to subunit dissociation) and hydrolysis. Mutants that cannot hydrolyze GTP (e.g. GsalphaQ227L, Gi2alphaQ205L) are constitutively activated and can lead to cell transformation and cancer. Here we have used a genetic screen to identify intragenic suppressors of a GTPase-deficient form of the Galpha in yeast, Gpa1(Q323L). Sequencing revealed second-site mutations in three conserved residues, K54E, R327S, and L353Delta (codon deletion). Each mutation alone results in a complete loss of the beta gamma-mediated mating response in yeast, indicating a dominant-negative mode of inhibition. Likewise, the corresponding mutations in a mammalian Gi2alpha (K46E, R209S, L235Delta) lead to inhibition of Gbeta gamma-mediated mitogen-activated protein (MAP) kinase phosphorylation in cultured cells. The most potent of these beta gamma inhibitors (R209S) has no effect on Gi2alpha-mediated regulation of adenylyl cyclase. Despite its impaired ability to release beta gamma, purified recombinant Gpa1(R327S) is fully competent to bind and hydrolyze GTP. These mutants will be useful for uncoupling Gbeta gamma- and Galpha-mediated signaling events in whole cells and animals. In addition, they serve as a model for drugs that could directly inhibit G protein activity and cell transformation.  相似文献   

20.
The activity of the major intracellular protein phosphatase, protein phosphatase 2A (PP2A), is determined by the nature of the associated regulatory subunit. A new family of human PP2A regulatory subunits has recently been identified. Three of these subunits, B56beta, B56delta, and B56epsilon, are most highly expressed in brain, while the B56alpha and B56gamma isoforms are highly expressed in cardiac and skeletal muscle. Genes PPP2R5A-PPP2R5E encoding the phosphatase regulatory proteins B56alpha, B56beta, B56gamma, B56delta, and B56epsilon have now been mapped by fluorescence in situ hybridization to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 --> p12, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号