首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
实验室模拟了不同热送热装温度的Ti微合金化连铸坯热送热装和加热过程,并采用光学显微分析、扫描电镜分析和透射电镜分析等方法,观察了生产条件下连铸坯和粗轧中间坯试样的显微组织,以及实验室条件下不同热履历铸坯试样的显微组织,分析了热送热装连铸坯在粗轧过程中表面裂纹的生成原因。结果表明,经热送热装的连铸坯表面金属中奥氏体晶界处的先共析铁素体膜及沿奥氏体晶界的碳氮析出物可能是导致粗轧过程表面裂纹形成的主要原因。  相似文献   

2.
王畅  王林  于洋  高小丽  吴耐  陈瑾 《轧钢》2021,38(1):20-25
利用电阻炉、Gleeble热模拟试验机和透射电镜,分析了高强IF钢中FeTiP相在热轧过程的析出行为.结果表明,高强IF钢连铸坯中心位置存在少量的FeTiP相析出物,但经过加热和长时间保温,析出物可完全回溶;在热轧过程中,轧制温度范围内的应变诱导析出物主要为TiS相、Ti4C2S2相和TiC相,难以捕捉到明显的FeTi...  相似文献   

3.
利用Gleebe1500热模拟试验机,对氮钛微合金化高强钢在薄板坯连铸连轧工艺下进行了热模拟试验,对模拟各工序下的Ti(C,N)析出物形貌进行观察和分析,并通过热力学、动力学分析了其析出的原因和条件,研究了Ti(C,N)析出物在热轧工艺中变化的全过程。研究表明:连铸过程中主要有直径200 nm的液析TiN;铸坯均热后有直径为50~100 nm的固析TiN,在原始奥氏体晶界和枝晶偏析带析出直径为100~200 nm的TiC;连轧后主要有形变诱导析出分布均匀、直径为10~30 nm的TiC;卷取后在铁素体中析出直径为6~15 nm弥散分布的TiC。  相似文献   

4.
对00Cr12N iNbTi铁素体不锈钢进行加热、粗轧、精轧及卷取过程的模拟实验,应用扫描电镜、透射电镜、化学相分析及热模拟等方法对试样中析出物进行了定性定量分析。结果表明:加热到1140℃,保温0、45和90 m in后,粒子主要为TiN,Ti的固溶率为66.3%,N的固溶率为1.3%;从粗轧到精轧,微米级的小颗粒减少,大颗粒增多,颗粒平均尺寸由1.8μm增大到3.2μm,有聚集长大现象;在热轧过程中微米级粒子形貌为方形或球形,基本保持稳定;纳米级的(Nb,Ti)C颗粒在精轧阶段开始析出,卷取保温及缓冷至室温过程中大量析出,多分布于晶界及晶内处,在较高温度下卷取会析出较多的纳米级(Nb,Ti)C颗粒。  相似文献   

5.
连铸坯热装有能耗低、生产效率高等优势,但微合金钢连铸坯热装后轧材表面常常出现裂纹。通过试验模拟了工业生产中微合金钢连铸坯的冷装和热装工艺,并用光学显微镜、扫描电镜和透射电镜对比观测了两种工艺的显微组织与析出物,分析了热装裂纹形成的原因。结果表明:与冷装相比,热装过程中(Ti,Nb)(C,N)析出物更容易在奥氏体晶界偏聚,这一方面能抑制再加热过程中奥氏体晶粒快速长大,但另一方面却容易引起应力集中,形成微裂纹。  相似文献   

6.
通过对热装、热送过程中连铸坯组织转变的热模拟研究,结合凝固过程中微合金元素第二相的析出行为和热应力变化,研究了X60微合金钢红送裂纹的形成机制。结果表明,X60微合金钢连铸坯不同的热装、热送方式会导致显著不同的铸坯组织和析出物形态,从而显著影响在再加热过程中铸坯红送裂纹的产生。X60微合金钢红送裂纹是在组织转变、微合金元素第二相析出和热应力三者的共同作用下形成的。组织转变过程中沿奥氏体晶界析出的先共析铁素体膜,在降低铸坯高温塑性的同时,也促进了第二相沿奥氏体晶界的析出。再加热过程中,先共析铁素体膜的减薄与第二相在晶界的偏聚和固溶间隙,导致了铸坯高温塑性的降低,从而显著增加了形成红送裂纹的可能性。连铸坯再加热至850℃的过程中产生的峰值应力是形成红送裂纹的主要原因。  相似文献   

7.
采用热轧-温轧工艺制备了表面质量良好的0.35 mm厚的Fe-3%Si硅钢带。对热轧、温轧以及退火试样进行显微组织观察,运用TEM观察析出物在热轧、温轧、退火时的析出特点,同时测量了该合金温轧薄板的磁性能。研究表明,热轧时析出物较多,大多为细小弥散的Cu Mn S化合物,平均析出大小为43 nm,分布密度约1.5×10~(10)个/cm~2。析出物在退火后较多,主要也是Cu Mn S化合物,平均尺寸大小为52.9 nm,分布密度约2.5×10~(10)个/cm~2,相对于热轧,析出粒子更大更均匀,抑制晶粒长大作用明显。通过热轧-温轧-退火工艺制备的Fe-3%Si薄板板材成形性和表面质量较好,磁感应强度为1.78 T,铁损为3.229 W/kg。  相似文献   

8.
研究第二相粒子在热轧过程中析出及冷轧退火过程中析出物的变化对性能的影响。结果表明,采用低温加热、终轧及高温卷取的热轧工艺可获得有利于性能的微观组织和析出物形态。随着退火温度升高,第二相粒子的聚集长大有利于延伸率和r值的升高。退火温度由820℃升高到860℃,Ti-IF钢在170 m/min和220 m/min两种退火速度下的强度有所下降,延伸率和r值上升。退火速度主要影响强度、延伸率和r值,随着退火速度的升高,强度、延伸率和r值升高。  相似文献   

9.
提出了非金属夹杂物细化晶粒的基本理论,论述了内部析出和外部加入两种在钢中形成细小第二相粒子的方法。由于目前常见的固相线以下形成的细小弥散的第二相非金属夹杂物颗粒或控轧控冷等技术均不能有效解决管线钢焊接热影响区(HAZ)晶粒粗大化问题,直接从液相中析出非金属夹杂物颗粒又有对钢液质量要求高和颗粒析出尺寸不易控制的问题。因此,采用适当的工艺向钢液中添加细小且能在钢液中稳定存在的纳米颗粒,分布于基础相晶内或晶界之上,可望成为解决上述问题的有效途径。  相似文献   

10.
采用秀射电镜和扫描电镜对经不同卷曲温度卷曲的热轧内磁屏蔽钢中的第二相进行测试分析,试验结果表明:析出物以MnS颗粒为主,它在热轧过程初始阶段已经折出,在卷曲过程中聚集长大,高的卷曲温度有利于MnS颗粒粗化,有利于铁素体晶粒的长大和改善磁性;在相同卷曲温度下,带钢头部位置的析出颗粒尺寸比尾部的偏大,夹杂物含量很低且分布没有规律,卷曲温度对夹杂物的形貌,尺寸和分布没有影响。  相似文献   

11.
通过SEM和TEM等方法对Ti-Nb-Mo微合金钢在两种不同冷却工艺下回火处理后的析出相分布、形貌和粒度进行了观察和分析,结合拉伸实验结果和硬度测试结果研究了回火过程中纳米析出颗粒的变化对试验钢强度变化的影响。结果表明,热轧淬火后试验钢基体组织为板条贝氏体,经650℃回火处理后并未形成纳米析出相,因此导致试验钢强度明显下降;而热轧空冷后试验钢基体组织主要为铁素体,部分铁素体中形成了大量的相间析出颗粒并具有良好的热稳定性,经650℃回火0.5 h后屈服强度提升明显,回火过程中铁素体基体和位错上形成了大量的纳米碳化物颗粒,这类碳化物的析出量大,尺度分布均匀,颗粒尺寸细小,是试验钢获得高强度最主要的原因。  相似文献   

12.
研究了热轧后补热工艺对27.6Cr-3.7Mo-2Ni超级铁素体不锈钢中σ-相析出行为的影响.结果 表明:热轧组织冷却过程中易形成σ-相、Laves相等脆性中间相.热轧后经1150℃短时间补热可以消除热轧变形组织,形成完全再结晶组织,有效减弱σ-相析出动力学,为热轧后冷却提供了更宽的时间窗口.  相似文献   

13.
在模拟工业化生产条件下研究C70250合金的热轧、固溶及时效处理工艺,对比C70250合金板坯的热轧、热轧+时效、热轧+冷轧+时效后合金的力学性能与导电性能,同时研究空冷与水冷对材料力学性能的影响.结果表明:时效析出为C70250合金的主要强化手段,时效前的塑性加工能使合金强度提高4%~5%.XRD分析表明:C70250合金铸锭经热轧开坯,在575~725 ℃之间保温1 h,析出相以Ni_2Si为主;合金开轧与终轧温度应控制在(900±50)~725 ℃之间,热轧板冷却速度不小于2.5 ℃/s;固溶处理制度为(900±50) ℃、1~3 h;时效工艺为400~ 450 ℃、4~6 h,该工艺制备的C70250合金抗拉强度不小于644 MPa,电导率IACS为40%,伸长率为8%.  相似文献   

14.
超高强热成型钢薄板坯连铸连轧(TSCR)工艺生产过程中,合理控制工艺参数,尽可能减少铸坯中粗大第二相的析出是保证产品质量和生产顺行的关键。明确粗大的微米级Ti(Cx,N1-x)析出相在TSCR工艺流程中析出演变规律对实际生产中质量控制和工艺参数优化具有重要的指导意义。本研究通过热力学计算和试验研究相结合的方式,对超高强热成型钢TSCR工艺连铸及均热这一连续过程中微米Ti(Cx,N1-x)析出相的析出演变行为进行了研究;明确了该过程中微米Ti(Cx,N1-x)相“析出-回溶-粗化”的演变规律,并对其析出长大速度、回溶速度以及粗化速度做了定量分析。结果表明,22MnB5钢中粗大的微米级Ti(Cx,N1-x)析出相在凝固末期液相中开始析出,开始析出的固相率为0.912。随着连铸温度不断降低,微米级Ti(Cx,N1-x)相中x值由0.1增大到0.7,Ti(Cx,N1-x)析出相逐渐由富氮相逐渐转变为富碳相。微米级Ti(Cx,N1-x)相在连铸冷却过程中不断长大,在升温过程中又部分回溶于基体中,随后在保温阶段再次长大。在TSCR工艺连铸和均热过程降温、升温、保温阶段,微米级Ti(Cx,N1-x)析出相颗粒生长、回溶、粗化的平均速度分别为0.007 2、-0.001 5、1.95×10-4 μm/s。  相似文献   

15.
利用Gleeble3500试验机模拟热轧带钢氧化层在不同卷取温度和冷却速度条件下的相变过程,采用激光拉曼光谱区分氧化层中细小析出相和分层组织结构。结果表明:氧化层中FeO在不同卷取温度和冷却速度条件下可形成几种典型的相变组织形态;降低带钢卷取温度和增加卷取后的冷却速度,有利于抑制Fe3O4在FeO层中的析出,提高热轧带钢表面氧化层酸洗去除效果。  相似文献   

16.
V-Ti微合金钢的轧后冷却相变及第二相析出行为   总被引:2,自引:0,他引:2  
黄杰  徐洲 《上海金属》2005,27(1):14-17
通过采用Gleeble3800进行热模拟试验,研究了V—Ti微合金钢热变形奥氏体的轧后冷却相变行为。并且利用电解浸蚀和碳萃取复型法获取第二相析出物,从而对轧后冷却相变中的第二相析出行为进行了研究,并探讨了不同冷却速度对第二相析出的影响。  相似文献   

17.
为了控制Q195钢中非金属夹杂物在凝固冷却过程的转变,采用ASPEX自动扫描电镜研究了实际生产凝固冷却过程夹杂物的转变,并用FactSage软件理论计算了这一过程夹杂物转变的热力学原理。研究结果表明:Si-Mn-Al复合脱氧Q195热轧带钢中间包内夹杂物主要成分为SiO2-MnO-Al2O3,连铸坯中硫化物夹杂质量分数急剧升高,氧化物夹杂中SiO2质量分数升高,MnO质量分数下降。钢中夹杂物成分与尺寸有明显对应关系,中间包内夹杂物尺寸越大,Al2O3质量分数越多,SiO2质量分数越低;铸坯中夹杂物尺寸越小,MnS质量分数越高,氧化物夹杂尺寸越小,SiO2质量分数越高。FactSage热力学计算表明,在钢凝固冷却过程,钢中会析出SiO2相、Mn2Al4Si5O18相和MnS相,析出相尺寸一般较小,使小尺寸夹杂物中SiO2和MnS质量分数升高,热力学理论计算可以较好地解释夹杂物成分在凝固冷却过程的转变。  相似文献   

18.
运用SEM、TEM、EDX及析出物定量分析等方法,通过实验室模拟热送热装工艺,研究了X80管线钢坯分别在750℃和1100℃热装轧制时微合金元素的固溶和析出情况.结果表明,1100℃热装的钢板轧前钢坯中Nb、V、Ti等微合金元素固溶量较高,在轧制和卷取过程中析出充分,且10nm以下析出颗粒所占比例较高,而750℃热装的钢坯中微合金元素固溶量明显低于1100℃热装的钢坯,其轧后钢板中18-36nm析出颗粒所占比例较高.因此,1100℃热装可以充分发挥微合金元素的析出强化作用.  相似文献   

19.
利用透射电镜对Ti-Mo微合金钢热轧后冷却过程中的析出相分布、形貌和尺寸进行了分析。结果表明:热轧试验钢的基体组织主要由铁素体和少量贝氏体组成,较高的屈服强度主要得益于铁素体基体上形成的高体积分数的相间沉淀颗粒;这些粒子形成于热轧后的连续冷却过程中,主要是(Ti,Mo) C,尺寸约5~10 nm,对铁素体基体产生明显的沉淀强化作用。铁素体在相变初期由于较快的生长速度导致晶粒内很少形成相间沉淀,这类析出主要形成于相变中后期的铁素体基体内。   相似文献   

20.
通过微合金化与控轧控冷技术的有机结合,在Nb-Ti微合金化X100管线钢中形成了大量纳米尺寸的析出粒子,对其形貌进行了观测分析,对组织中的析出粒子尺寸分布及其析出强化作用进行了定量分析,通过动力学计算分析了Nb(C,N)在奥氏体中的析出规律。结果表明:高级别管线钢中的析出相主要有两种类型,Nb(C,N)析出(1~30 nm)和(Ti,Nb)(C,N)复合析出(50~300 nm),均为面心立方结构;X100管线钢析出强化贡献值约为70 MPa;对Nb-Ti微合金化管线钢中Nb(C,N)析出的动力学计算表明,在热连轧生产线生产高级别管线钢时,热轧过程中碳氮化物析出不到10%,90%均在随后的冷却过程中析出,在中厚板生产线生产级高级别管线钢时,热轧过程中碳氮化物析出近70%,其余30%主要在随后的冷却过程中析出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号