首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cathodoluminescence from GaN x As1?x layers (0 ≤ x ≤ 0.03) was measured at photon energies ranging from the intrinsic absorption edge to 3 eV at room temperature. An additional emission band was visible in the visible range of the cathodoluminescence spectra. The intensity of this band is two orders of magnitude lower than the edge-emission intensity. The photon energy corresponding to the peak of this band and its FWHM are virtually independent of x and equal to ~2.1 and 0.6–0.7 eV, respectively. This emission is related to indirect optical transitions of electrons from the L 6c and Δ conduction-band minimums to the Γ15 valence-band maximum.  相似文献   

2.
The magnetoresistance of a lightly doped p-Ge1?xSix alloy is studied in the range of compositions x = 1–2 at %. The results are compared with the available data for lightly doped p-Ge. The studies have been carried out using ESR measurements at a frequency of 10 GHz in the temperature range 10–120 K. It is established that micrononuniformity in the distribution of Si in the Ge lattice (Si clusters) suppresses the interference part of the anomalous magnetoresistance and, in addition, results in an averaging of the effects of light and heavy holes. This observation suggests a sharp decrease in the inelastic scattering time in the case of a Ge1?xSix solid solution as compared to that of Ge.  相似文献   

3.
The photoconductivity and its relaxation characteristics in tunneling pin GaAs/AlAs heterostructures under pulsed illumination is studied. Quantum oscillations in the photoconductivity are detected depending on the bias voltage with the period independent of the light wavelength, as well as an oscillating component of the relaxation curves caused by modulation of the recombination rate at the edge of a triangular quantum well in the undoped i layer, as in the case of photoconductivity oscillations. The common nature of oscillations of the steady-state photoconductivity and relaxation curves under pulsed illumination is directly confirmed by the lack of an oscillating component in both types of dependences of some studied p–i–n heterostructures. Simultaneous suppression of the observed oscillations of dependences of both types as the temperature increases to 80 K also confirms the proposed mechanism of their formation. The dependences of these oscillations on the magnetic field and light flux power are studied. Oscillation-amplitude suppression in a magnetic field of ~2 T perpendicular to the current is caused by the effect of the Lorentz force on the ballistic motion of carriers in the triangular-quantum-well region.  相似文献   

4.
Nanometer-thick amorphous boron (α-B) layers were formed on (100) Si during exposure to diborane (B2H6) in a chemical vapor deposition (CVD) system, either at atmospheric or reduced pressures, at temperatures down to 500°C. The dependence of the growth mechanism on processing parameters was investigated by analytical techniques, such as transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS), in conjunction with extensive electrical characterization. In particular, devices fabricated by B deposition effectively demonstrated that p + doping of the silicon substrate can be achieved within 10 nm from the surface in a manner that is finely controlled by the B2H6 exposure conditions. High-quality, extremely ultrashallow, p + n junctions were fabricated, and their saturation current was tuned from high Schottky-like values to low deep pn junction-like values by the increasing of the deposited B layer thickness. This junction formation exhibited high selectivity, isotropy, spatial homogeneity, and compatibility with standard Si device fabrication.  相似文献   

5.
Intersegment insulation in pn-junction arrays based on high-resistivity silicon, which controls the interaction of neighboring elements of position-sensitive detectors, was studied. It was shown that current-voltage characteristics of the intersegment gap of the pn junction deeply depleted due to an applied reverse voltage contain a portion of a step change in the current, which controls the intersegment insulation resistance. This feature is caused by the effect of switching of a small fraction of the bulk current between neighboring segments. In this case, the effect of the ohmic conductance between segments on the intersegment insulation resistance is ten times weaker than the effect of bulk current switching.  相似文献   

6.
Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND?=?1014 cm?3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x?=?0.2195) with n-type carrier concentration of n?=?1?×?1014 cm?3 and electron mobility of μ?=?280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).  相似文献   

7.
The search for alternative energy sources is at the forefront of applied research. In this context, thermoelectricity, i.e., direct conversion of thermal into electrical energy, plays an important role, particularly for exploitation of waste heat. Materials for such applications should exhibit thermoelectric potential and mechanical stability. PbTe-based compounds include well-known n-type and p-type compounds for thermoelectric applications in the 50°C to 600°C temperature range. This paper is concerned with the mechanical and transport properties of p-type Pb0.5Sn0.5Te:Te and PbTe<Na> samples, both of which have a hole concentration of ∼1 × 1020 cm−3. The ZT values of PbTe<Na> were found to be higher than those of Pb0.5Sn0.5Te:Te, and they exhibited a maximal value of 0.8 compared with 0.5 for Pb0.5Sn0.5Te:Te at 450°C. However, the microhardness value of 49 HV found for Pb0.5Sn0.5Te:Te was closer to that of the mechanically stable n-type PbTe (30 HV) than to that of PbTe<Na> (71 HV). Thus, although lower ZT values were obtained, from a mechanical point of view Pb0.5Sn0.5Te:Te is preferable over PbTe<Na> for practical applications.  相似文献   

8.
Thin Pb x Sn1 − x S films are obtained by the “hot-wall” method at substrate temperatures of 210–330°C. The microstructure, composition, morphology, and electrical characteristics of films are investigated. On the basis of the obtained films, photosensitive In/p-Pb x Sn1 − x S Schottky barriers are fabricated for the first time. The photosensivity spectra of these structures are investigated, and the character of interband transitions and the band-gap values are determined from them. The conclusion is drawn that Pb x Sn1 − x S thin polycrystalline films may be used in solar-energy converters.  相似文献   

9.
The electrochemical behavior of nonaqueous dimethyl sulfoxide solutions of BiIII, TeIV, and SbIII was investigated using cyclic voltammetry. On this basis, Bi x Sb2−x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique in nonaqueous dimethyl sulfoxide solution, and the composition, structure, morphology, and thermoelectric properties of the films were analyzed. Bi x Sb2−x Te y thermoelectric films prepared under different potential ranges all possessed a smooth morphology. After annealing treatment at 200°C under N2 protection for 4 h, all deposited films showed p-type semiconductor properties, and their resistances all decreased to 0.04 Ω to 0.05 Ω. The Bi0.49Sb1.53Te2.98 thermoelectric film, which most closely approaches the stoichiometry of Bi0.5Sb1.5Te3, possessed the highest Seebeck coefficient (85 μV/K) and can be obtained under potentials of −200 mV to −400 mV.  相似文献   

10.
Layers of the GaSb1 ? x As x alloy with arsenic content in the range x = 0.06–0.15 have been grown for the first time on InAs (100) substrates by metal-organic vapor-phase epitaxy. A new approach to the calculation of the band diagram of the GaSbAs alloy is suggested. It is demonstrated on the basis of magnetotransport measurements in p-GaSbAs/p-InAs heterostructures and with the method suggested by the authors for the calculation of band diagrams for alloys in the GaSbAs system that, in the composition range under study, the GaSbAs/InAs heterojunction is a type II broken-gap heterojunction.  相似文献   

11.
Optical studies of unstrained narrow-gap Al x In1 − x Sb semiconductor alloy layers are carried out. The layers are grown by molecular-beam epitaxy on semi-insulating GaAs substrates with an AlSb buffer. The composition of the alloys is varied within the range of x = 0–0.52 and monitored by electron probe microanalysis. The band gap E g is determined from the fundamental absorption edge with consideration for the nonparabolicity of the conduction band. The refined bowing parameter in the experimental dependence E g (x) for the Al x In1 − x Sb alloys is 0.32 eV. This value is by 0.11 eV smaller than the commonly referred one.  相似文献   

12.
The electrical properties of chromium-doped n-Pb1?x Ge x Te alloys (x = 0.02–0.13) have been studied. A decrease in the free-electron concentration and a metal-insulator transition are observed as the germanium content of alloys increases. This is due to the Fermi level pinning by the chromium impurity level and to the flow of electrons from the conduction band to the impurity level. The experimental data obtained are used to calculate, in terms of the two-band Kane dispersion law, the dependences of the electron concentration and Fermi energy on the germanium content in the alloy. The motion rate of the chromium-related level with respect to the conduction band bottom is determined and a model of variation of the electronic structure with the matrix composition is suggested.  相似文献   

13.
The search for alternative energy sources is presently at the forefront of applied research. In this context, thermoelectricity for direct energy conversion from thermal to electrical energy plays an important role. This paper is concerned with the development of highly efficient p-type Ge x Pb1−x Te alloys for thermoelectric applications, using spark plasma sintering. The carrier concentration of GeTe was varied by alloying of PbTe and/or by Bi2Te3 doping. Very high ZT values up to ~1.8 at 500°C were obtained by doping Pb0.13Ge0.87Te with 3 mol% Bi2Te3.  相似文献   

14.
Liquid-phase epitaxy is used to fabricate Pb0.8Sn0.2Te films, undoped or doped with indium to different levels. The depth profiles of the carrier density and dopant concentration in the films are measured and examined. A uniform dopant concentration to a depth of 15 μm is obtained. Electrical-conduction inversion is observed at a temperature of 77.3 K as the doping level is varied. The liquid-phase epitaxial method is shown to be a more suitable technology for the reproducible manufacture of epitaxial films with a given carrier density, such as the ones used in terahertz detectors.  相似文献   

15.
Using the solution of the 2D Schrödinger equation, systematic features of distribution of charge carriers in the Si/Si1 ? x Ge x nanostructures and variations in the efficiency of radiative recombination when pyramidal 2D clusters are transformed into 3D dome clusters with increasing thickness of nanolayers are established. The effect of the composition of the layers on the efficiency of the elastic stress in the structure and, as a consequence, the variation in conduction bands and valence band of the Si1 ? x Ge x nanostructures is taken into account. On realization of the suggested kinetics model, which describes recombination processes in crystalline structures, saturation of radiation intensity with increasing the pump intensity caused by an increase in the contribution of the Auger recombination is observed. A decrease in the contribution of the nonradiative Auger recombination is attained by decreasing the injection rate of carriers into the clusters, and more precisely, by an increase in the cluster concentration and an increase in the rate of radiative recombination.  相似文献   

16.
Undoped mid-wave infrared Hg1?xCdxSe epitaxial layers have been grown to a nominal thickness of 8–14 μm on GaSb (211)B substrates by molecular beam epitaxy (MBE) using constant beam equivalent pressure ratios. The effects of growth temperature from 70°C to 120°C on epilayer quality and its electronic parameters has been examined using x-ray diffraction (XRD) rocking curves, atomic force microscopy, Nomarski optical imaging, photoconductive decay measurements, and variable magnetic field Hall effect analysis. For samples grown at 70°C, the measured values of XRD rocking curve full width at half maximum (FWHM) (116 arcsec), root mean square (RMS) surface roughness (2.7 nm), electron mobility (6.6?×?104 cm2 V?1 s?1 at 130 K), minority carrier lifetime (~?2 μs at 130 K), and background n-type doping (~?3?×?1016 cm?3 at 130 K), indicate device-grade material quality that is significantly superior to that previously published in the open literature. All of these parameters were found to degrade monotonically with increasing growth temperature, although a reasonably wide growth window exists from 70°C to 90°C, within which good quality HgCdSe can be grown via MBE.  相似文献   

17.
In this paper, the performance analysis of dual branch switch and stay combining (SSC) receivers operating over correlated and identically distributed (i.d.) α-μ fading channels is presented. Assuming this diversity technique, infinite series expressions with fast converging properties are derived for the probability density function (pdf), cumulative distribution function (cdf) and the moments of the output envelope. The proposed analysis is used for evaluating the important performance criteria, such as the outage probability, the mean square output envelope, the amount of fading and the average bit error probability (ABEP). The effects of fading severity, branch correlation and optimum choice of switching threshold are considered and numerically presented. Monte Carlo simulations confirm the validity and accuracy of the derived analytical expressions.  相似文献   

18.
On the basis of the self-consistent model of transport processes in the semiconductor pi–n diode during its self-heating under conditions of limited heat sink, the mechanisms of unusual effect—the formations of N–S transition in nonisothermal I–V characteristics of the device were numerically analyzed. It is established that such an effect is caused by a pronounced temperature reduction of the mobility of carriers in the high-resistivity base and the injection-level saturation at the current densities J > 300–500 A/cm2. The saturation is attained due to the Auger recombination or the leakage of carriers from plasma into heavily doped emitter layers, the integrated current of which, as a rule, exceeds the recombination integrated current in the base under these conditions. The Auger recombination in the anode emitter also starts to play an appreciable role in the injection-level restriction in the base if the impurity concentration becomes higher than 1018 cm−3 in there.  相似文献   

19.
Thermopower in n-Cd0.2Hg0.8Te (6–100 K) is studied. A large effect of drag of the charge carriers by phonons αph is found. The influence of the magnetic field H on the drag thermopower is considered. It is established that the magnetic field exerts the effect mainly on the electron component of αph. The data are interpreted in the context of the theory taking into account the effect of H on thermopower αph, in which parameter A(ɛ) proportional to the static force of the drag effect is introduced. By the experimental data αph(T, H), T, and H dependences A(ɛ) are determined. It is shown that, as H increases, A(ɛ) sharply decreases. This explains a decrease in αph in the magnetic field, power index k in dependence αphT −κ, and narrowing the region of manifestation of the drag effect. It is established that at classically high fields, the drag effect in n-Cd0.2Hg0.8Te does not vanish.  相似文献   

20.
Coarse-grained crystals of AgGaSe2 and AgInSe2 ternary compounds and their alloys are grown by planar crystallization of the melts. For the crystals produced in this way, the transmittance spectra near the fundamental absorption edge are studied. From the experimental spectra, the band gap (E g) and its variation with composition are determined. It is established that E g is a nonlinear function of the composition parameter x. The dependence E g (x) is calculated theoretically in the context of the Van Vechten-Bergstresser model and Hill-Richardson pseudopotential model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号