首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
风电场接入系统静态电压稳定研究   总被引:2,自引:0,他引:2  
大型风电场并网运行将会影响电力系统的电压稳定性。分别就两种主流风机(即普通异步发电机和双馈感应电机)风电场接入系统的静态电压稳定问题进行了研究。首先简要介绍了文中分析静态电压稳定问题的方法,即连续潮流法。然后分别建立了两种主流风机的稳态数学模型,分析了两种风电场静态电压稳定的特点。最后通过算例仿真,分析了影响风电场静态电压稳定的主要因素,比较了不同风机类型对风电场静态电压稳定的影响。  相似文献   

2.
风电场静态电压稳定研究   总被引:1,自引:0,他引:1  
大量风电并网运行将会影响电力系统的静态电压稳定性。不同的风机类型对系统电压稳定的影响差别很大。建立了风电场两种主流风机的数学模型,分析了风电场静态电压稳定的特点,通过连续潮流计算得到了风电场关键节点电压随风电场有功功率变化的P-V曲线,计算了一定条件些下的电压稳定极限,比较了不同风机类型对系统电压稳定极限的影响,分析了影响风电场静态电压稳定极限的主要因素。结果表明,影响风电场静态电压稳定性的主要因素为风机类型,接入线路参数R/X,机端补偿电容等。基于双馈异步发电机风电场静态电压稳定性要明显好于基于普通异步  相似文献   

3.
不同风电机组的频率响应特性仿真分析   总被引:1,自引:0,他引:1  
研究分析了恒速异步风力发电机、双馈感应风力发电机和直驱永磁同步风力发电机组成的风电场的频率响应特性;利用DIgSILENT/PowerFactory建立了风电场的动态模型;通过仿真显示:由于采用解耦控制方式,基于双馈感应电机、直驱永磁同步电机的变速风电机组不能对系统频率变化做出快速有效响应,而基于异步感应电机的恒速风电机组能快速地对系统频率变化做出正确响应,能有效地提高系统的频率稳定性。  相似文献   

4.
大规模风电场对电力系统稳定性影响的研究   总被引:1,自引:0,他引:1  
风电机组由于其自身特点,风电机组与传统发电机组有不同的稳态和暂态特性,大规模风力发电接入电网后,电网的电压稳定性、暂态稳定性及频率稳定性都会发生变化。主要针对基于普通异步感应电机和基于双馈式感应电机风电机组的风电场对电网稳定性影响进行深入研究,使得对风电场接入电网后,给电网稳定性带来的问题有更全面、更深入的认识,有利于我国风力发电快速、健康发展。  相似文献   

5.
为研究风电接入对安庆电网的影响,根据风功率的转换特性及双馈感应电机的运行特性,建立了风电场的风功率模型及双馈感应电机的动态模型,利用中国版BPA软件分析了风电接入系统后对电网静态电压稳定性、网损、短路电流及电网暂态稳定性的影响。结果表明,风电接入后电网电压满足正常运行要求,有利于网损的减小,但增大了短路点的短路电流;此外,由于风电容量较小,风电接入对电网暂态稳定性影响不大。可见,风电接入后安庆电网能安全经济运行。  相似文献   

6.
《可再生能源》2017,(6):884-892
为了研究双馈感应机型风电场对风火打捆外送系统暂态失步特性的影响,利用PSD-BPA仿真平台建立了风电场动态模型及风火打捆外送系统,从风电接入容量、风电无功电压运行方式、不同故障地点及风电场距离并网点位置4个方面仿真分析了风电场对系统失步特性的影响。揭示得到如下的影响规律:风电接入容量越大、风电恒电压运行方式、风电接入距离故障点较远、风电场距离并网点较近对风火打捆送端系统的暂态稳定性更有利。  相似文献   

7.
为保持系统稳定,必须要求大规模并网风电场具有低电压穿越能力。双馈感应发电机(DFIG)低电压穿越功能已成为研究热点。介绍了串联制动电阻装置对双馈感应发电机暂稳特性贡献的机理。详细分析了在电网故障情况下,制动电阻装置对双馈风电场低电压穿越能力的贡献,分别就制动电阻接在风电场升压变处与接在双馈感应发电机机端对低电压穿越的改善效果进行分析。试验结果表明:故障期间投入适当大小制动电阻,能较好地提高双馈风电场低电压穿越功能;将制动电阻放置在风电场升压变处贡献效果优于将制动电阻装置放置在双馈感应发电机机端处。  相似文献   

8.
刘昊  王玮  唐芬 《太阳能学报》2019,40(2):387-395
提出一种考虑负荷类型和风电机组无功极限的分散式风电场优化运行策略。建立基于静态电压特性的典型负荷通用模型;挖掘分散式风电机组无功能力,采用机端并联电容器平衡并提高双馈感应发电机无功调节能力;分析风电机组功率因数对配电网各节点电压、有功和无功网损影响规律;在此基础上,提出基于改进萤火虫算法的分散式风电场最优功率因数运行方法。基于IEEE-33节点模型进行仿真计算,结果表明:分散式风电场小范围功率因数优化调节可有效减小配电网网损,提高电压稳定性。  相似文献   

9.
为研究静止同步补偿器(STATCOM)对连接到弱电网风电场电压稳定性的影响,基于双馈型风机和STATCOM数学模型,通过数学分析研究了不同电网强度下连接到弱电网风电场的电压静态稳定问题,通过系统仿真研究了STATCOM对风电场静态和动态行为的影响。结果表明,弱电网条件下风电场的电压静态稳定极限和功率传输极限会随着电网强度的减弱而降低;STATCOM的应用减小了弱电网条件下风电场电压的波动幅度,提高了电压稳定极限和功率传输能力,且有利于实现风机的故障穿越。  相似文献   

10.
用静止无功补偿器(SVC)和可控硅控制串联补偿器(TCSC)进行联合补偿,以提高异步风机风电场的暂态电压稳定性。在Matlab/Simulink中搭建了风电场及相关电网模型,通过仿真计算验证了SVC和TCSC对异步机风电场与电网暂态电压稳定性的作用。研究结果表明:在风速随机波动的情况下,SVC能动态地补偿无功功率,保持系统的暂态稳定性;当接入电网发生三相短路的大扰动故障时,TCSC能够有效地恢复机端电压,提高了风电场的低电压穿越能力。  相似文献   

11.
Emphasis in this article is on the design of a co‐ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine concept is quite sensitive to grid faults and requires special power converter protection. The fault ride‐through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues. A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor‐side converter and grid‐side converter) participate in the grid voltage control in a co‐ordinated manner. By default the grid voltage is controlled by the rotor‐side converter as long as it is not blocked by the protection system, otherwise the grid‐side converter takes over the voltage control. Moreover, the article presents a DFIG wind farm model equipped with a grid fault protection system and the described co‐ordinated voltage control. The whole DFIG wind farm model is implemented in the power system simulation toolbox PowerFactory DIgSILENT. The DFIG wind farm ride‐through capability and contribution to voltage control in the power system are assessed and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a DFIG wind farm equipped with voltage control can help a nearby active stall wind farm to ride through a grid fault, without implementation of any additional ride‐through control strategy in the active stall wind farm. Copyright © 2006 John Wiley &Sons, Ltd.  相似文献   

12.
风电并网的静态电压稳定性研究   总被引:1,自引:0,他引:1  
应用P-V曲线法对含风电场(基于变速恒频机组构成)的电力系统的静态电压稳定问题进行研究。提出基于连续潮流法的灵敏度指标来分析风电场并网后系统的静态电压稳定裕度及与相关支路的参与程度情况。通过含有变速恒频机组的风电场并网的简化模型算例进行了仿真研究,结果表明在电压稳定极限点附近,风电功率注入使得风电场及其附近节点成为电压不稳定的关键区域。  相似文献   

13.
彭喜云 《新能源进展》2014,2(2):111-116
轻型直流输电(VSC-HVDC)采用电压源换流器技术,具有较强的可控性,是目前比较理想的一种风电场并网方式。本文研究了VSC-HVDC在风电场并网中的控制策略。风电场侧的换流站通过控制风电场的频率,可以让鼠笼异步风力发电机组变速运行,从而提高此类风力发电机组在低风速下的风能利用率;对于双馈风力发电机组组成的风电场,换流站控制风电场的频率为额定值,同样取得了很好的控制效果。  相似文献   

14.
A novel interface neurocontroller (INC) is proposed for the coordinated reactive power control between a large wind farm equipped with doubly fed induction generators (DFIGs) and a static synchronous compensator (STATCOM). The heuristic dynamic programming (HDP) technique and radial basis function neural networks (RBFNNs) are used to design this INC. It effectively reduces the level of voltage sags as well as the over-currents in the DFIG rotor circuit during grid faults, and therefore, significantly enhances the fault ride-through capability of the wind farm. The INC also acts as a coordinated external damping controller for the wind farm and the STATCOM, and therefore, improves power oscillation damping of the system after grid faults. Simulation studies are carried out in PSCAD/EMTDC and the results are presented to verify the proposed INC.   相似文献   

15.
As a result of the increasing wind power penetration on power systems, the wind farms are today required to participate actively in grid operation by an appropriate generation control. This paper presents a comparative study on the performance of three control strategies for DFIG wind turbines. The study focuses on the regulation of the active and reactive power to a set point ordered by the wind farm control system. Two of them (control systems 1 and 2) are based on existing strategies, whereas the third control system (control system 3) presents a novel control strategy, which is actually a variation of the control system 2. The control strategies are evaluated through simulations of DFIG wind turbines, under normal operating conditions, integrated in a wind farm with centralized control system controlling the wind farm generation at the connection point and computing the power reference for each wind turbine according to a proportional distribution of the available power. The three control systems present similar performance when they operate with power optimization and power limitation strategies. However, the control system 3 with down power regulation presents a better response with respect to the reactive power production, achieving a higher available reactive power as compared with the other two. This is a very important aspect to maintain an appropriate voltage control at the wind farm bus.  相似文献   

16.
双馈变速风电机组低电压穿越控制   总被引:6,自引:3,他引:3  
当系统中风电装机容量比例较大时,系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。分析了双馈风电机组LVRT原理和基于转子撬棒保护(crow-bar protection)的LVRT控制策略,在电力系统仿真分析软件DIgSILENT/Power Factory中建立了双馈风电机组模型及其LVRT控制模型,以某地区风电系统为例进行仿真计算,分析转子撬棒投入与切除策略及动作时间对实现机组LVRT的影响。  相似文献   

17.
A control strategy for compensating AC network voltage unbalance using doubly fed induction generator (DFIG)-based wind farms is presented. A complete DFIG dynamic model containing both the rotor and grid side converters is used to accurately describe the average and ripple components of active/reactive power, electromagnetic torque and DC bus voltage, under unbalanced conditions. The principle of using DFIG systems to compensate grid voltage unbalance by injecting negative sequence current into the AC system is described. The injected negative sequence current can be provided by either the grid side or the rotor side converters. Various methods for coordinating these two converters are discussed and their respective impacts on power and torque oscillations are described. The validity of the proposed control strategy is demonstrated by simulations on a 30 MW DFIG-based wind farm using Matlab/Simulink during 2 and 4% voltage unbalances. The proposed compensation strategy can not only ensure reliable operation of the wind generators by restricting torque, DC link voltage and power oscillations, but also enable DFIG-based wind farms to contribute to rebalancing the connected network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号