首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
粉末活性炭去除原水中阿特拉津突发污染的研究   总被引:4,自引:1,他引:3  
利用中试装置研究了水源水阿特拉津突发污染的应急处理措施.试验结果表明:常规工艺不能有效去除原水中的阿特拉津,投加粉末活性炭(PAC)可有效去除阿特拉津,确保出水达到水质标准的要求;PAC投量为50 mg/L时,可使初始浓度为200 μg/L的阿特拉津降低到2 μg/L以下;KMnO4与PAC联用的去除效果比单独使用PAC略有改善但并不显著,预氯化则会降低PAC对阿特拉津和UV254的去除率.  相似文献   

2.
在常规混凝工艺确定的最佳处理条件下,考察了单独高锰酸钾(KMnO4)和次氯酸钠(NaClO)预氧化、单独投加粉末活性炭(PAC)以及KMnO4和PAC联用对混凝处理东太湖原水的强化效果。结果表明,聚氯化铝和硫酸铝的最佳投加量分别为20mg/L和30mg/L,聚氯化铝的混凝效果明显优于硫酸铝;投加KMnO4对浊度、CODMn和UV254的去除均有一定程度提高,但不利于原水氨氮的去除;投加PAC有显著的强化混凝作用,各指标去除率均有所提高;KMnO4和PAC联用能进一步提高水中UV254的去除率;预氧化大大提高了混凝对氨氮的去除效果,投加1mg/L NaClO对氨氮去除率可达100%。  相似文献   

3.
强化混凝去除微污染水源水中镉(Ⅱ)的研究   总被引:1,自引:0,他引:1  
针对微污染水源水中的Cd(Ⅱ)污染去除,以聚硫酸铁(PFS)为混凝剂,采用强化混凝对水中微量Cd(Ⅱ)的去除进行了研究。考察了pH、PFS投加量、Cd(Ⅱ)初始浓度和原水浊度等因素对Cd(Ⅱ)去除的影响。结果表明,在pH≥9的条件下,当原水中Cd(Ⅱ)为0.1mg/L时,投加3.75mg/L的PFS(以Fe计),可使滤后水Cd(Ⅱ)剩余浓度降至0.005mg/L以下,满足《生活饮用水卫生标准》(GB5749—2006)要求;当水中Cd(Ⅱ)初始浓度较高时,适当增加PFS投加量即可使镉得到有效去除。强化混凝是去除微污染水源水中Cd(Ⅱ)污染的经济、有效方法之一。  相似文献   

4.
石灰软化法处理地下水源水硬度试验研究   总被引:1,自引:0,他引:1  
采用石灰软化法处理某地下水源水硬度,结果表明,当石灰投加量为220mg/L,pH为8.7~8.9时,可使原水硬度和碱度分别由300mg/L和250mg/L降至115mg/L和80mg/L以下,去除率分别为61.7%和68%,沉淀和过滤对硬度去除效果影响不大;投加石灰后出水浊度明显升高,投加PAC(聚氯化铝)40mg/L,并与常规工艺联用,可使出水浊度稳定降低至0.15~0.65NTU;试验证明"石灰+PAC+常规工艺"能有效去除水中硬度和浊度,出水煮沸后不再生成沉淀和悬浮物,符合现行《生活饮用水卫生标准》(GB 5749—2006)和用户使用要求,石灰软化法药耗成本估算为0.246元/m3。  相似文献   

5.
混凝-微滤膜净化微污染水源水的研究   总被引:15,自引:0,他引:15  
莫罹  黄霞  李琳 《给水排水》2001,27(8):12-15
通过改进的烧杯混凝试验确定了混凝 微滤膜组合工艺的混凝剂 (PAC)适宜投加量为 2~ 3mg/L。在该混凝剂投加量条件下 ,进行了混凝 微滤膜组合工艺处理微污染水源水的连续试验。结果表明 ,该工艺对浊度 ,OC以及UV2 54 的去除效率分别为 85%~ 95% ,37%~ 52 %和 58%~ 81% ,优于膜直接过滤时的去除效果  相似文献   

6.
突发溴氰菊酯污染的应急处理工艺中试研究   总被引:1,自引:0,他引:1  
溴氰菊酯是净水厂原水突发水质污染的高风险物质之一。通过中试研究了原水突发溴氰菊酯污染的应急处理工艺。结果表明,仅靠常规工艺难以有效应对原水突发溴氰菊酯污染;向原水中投加粉末活性炭(PAC)与强化常规处理工艺联用可有效去除水中溴氰菊酯,保证处理后水质达到生活饮用水卫生标准要求;炭液混合和混凝澄清阶段是溴氰菊酯去除的主要阶段,去除率为42%~98%;炭砂滤柱通过吸附截留水中载有溴氰菊酯的微小絮体颗粒,实现进一步去除水中溴氰菊酯的目的;颗粒炭滤柱作为安全余量,是水质安全保障的最后关口。基于中试结果,给出了应对原水突发溴氰菊酯污染时PAC对溴氰菊酯的吸附能力。  相似文献   

7.
太湖B支流地表水受水土流失、水体富营养化和环境污染等因素影响,水体污染严重,水中有机物浓度和藻密度相对较高。常规的"混凝—沉淀—砂滤—加氯消毒"处理工艺难以有效地去除水中有机物、铁锰、藻类等物质。采用高锰酸盐(PPC)-聚丙烯酰胺(PAM)联用强化混凝工艺对原水进行处理。高锰酸盐投量在0.45 mg/L和聚丙烯酰胺投量在0.07 mg/L条件下联用强化混凝的静态试验结果表明:PPC-PAM联用强化混凝对浊度、色度、铁、锰和耗氧量的平均去除率为90%、73%、92%、99%和38%。PPC在0.3~0.5 mg/L投量和PAM在0.05~0.10 mg/L投量下联用强化混凝生产试验的出厂水浊度、色度、铁、锰等指标,均比历史同期水平要好。  相似文献   

8.
为了使某水库微污染水源水达到生活饮用水卫生标准,在低温低浊和常温两种情况下,采用臭氧预氧化强化混凝工艺对微污染水源水中的有机物、浊度和色度等污染物进行中试去除研究。结果表明,臭氧预氧化与强化混凝联用工艺对有机污染物、浊度和色度都有良好的去除效果,并且具有很强的抗冲击负荷能力。在低温低浊和常温两种情况下,工艺出水高锰酸盐指数(CODMn)、浊度和色度分别为2.33~2.99mg/L、≤0.74NTU、≤6.89度,均满足《生活饮用水卫生标准》(GB5749—2006)的要求。  相似文献   

9.
饮用水臭氧应用安全性研究   总被引:1,自引:0,他引:1  
对预臭氧、臭氧—生物活性炭等技术与常规水处理工艺联用中有机物去除效果、消毒副产物THMFP的消除等进行了研究。结果表明:采用适量臭氧(如1mg/L)预氧化,可有效提高混凝过程中有机物去除率;THMFP从常规处理的116μg/L降至78μg/L(1mg/LO3)。与预臭氧强化混凝联用的臭氧—生物活性炭工艺能进一步降低DOC和THMFP。研究发现:溴酸盐随着臭氧含量呈现起伏变化,溴酸盐相关前驱物不易分离去除。两次臭氧投加(预臭氧和主臭氧)均导致溴酸盐、AOC和甲醛升高;其含量可分别在后续的混凝过滤及生物活性炭过程中得到控制,仅AOC含量较原水和常规工艺出水有所升高。  相似文献   

10.
乙苯是净水厂原水突发水质污染的高风险物质之一.通过中试研究了应对原水突发乙苯污染的应急处理工艺.结果表明,常规工艺难以去除水中乙苯,向原水中投加粉末活性炭(PAC)与强化常规工艺联用可有效去除水中乙苯,保证处理后水质达到《生活饮用水卫生标准》(GB 5749-2006)要求;PAC与原水混合阶段是乙苯去除的主要阶段,去除率为78.9%~97.4%,强化常规工艺可进一步去除水中低浓度乙苯,颗粒活性炭滤柱作为安全余量,是水质安全保障的最后关口.基于中试结果,给出了应对原水突发乙苯污染时PAC对乙苯的吸附能力.  相似文献   

11.
以北江水为处理对象,通过中试考察了超滤膜处理工艺与混凝沉淀处理工艺、投加二氧化氯及活性炭吸附工艺构建的6种超滤膜组合工艺,研究其对水中浊度、COD_(Mn)、TOC的去除效果以及超滤膜跨膜压差的变化情况。结果表明,采用混凝沉淀+二氧化氯+超滤组合工艺处理北江原水,可提高该流域净水厂供水水质,技术上和经济上是可行的。该组合工艺可在控制膜污染进程前提下,使出水浊度达到0.02~0.03 NTU,TOC小于1mg/L。当原水COD_(Mn)在1.49~2.61 mg/L时,此种超滤膜组合工艺对COD_(Mn)去除率仅为46.86%。碱/氯复合洗液适用于去除北江原水对改性聚氯乙烯超滤膜造成的膜污染。  相似文献   

12.
载粉末活性炭(PAC)过滤集PAC吸附与过滤于一体,能够应用于微污染原水处理。配水试验结果表明:粒径为1.25-2.5mm,厚度为1000mm的聚苯乙烯滤料层能够用于载PAC过滤。影响过滤效果的主要因素为PAC载量和混凝剂投加量,当混凝剂T3010和聚氯化铝的投加量分别为0.09mg/L和2.5mg/L,PAC载量为2-3g/L滤料时,载PAC过滤处理浊度为20-40NTU的微污染原水的效果达到最佳,对CODMn和浊度都具有很好的去除效果。Z河水作为原水的试验结果表明:载PAC过滤对河水浊度、UV254、CODMn的去除率分别为97%-97.9%、50.9%-63.4%、68.5%-71.4%。  相似文献   

13.
高藻水处理方案探讨   总被引:1,自引:0,他引:1  
采用烧杯试验,探讨混凝剂、粉末活性炭(PAC)、高锰酸钾、高锰酸盐复合剂(PPC)、次氯酸钠以及它们之间联用对藻类和浊度的处理效果.结果表明,当藻类数量低于1×107个/L时,提高混凝剂投加量可有效去除藻类;但当藻类数量较高(1×107~5×107个/L)时,采用预氧化以及PAC吸附与混凝联用的工艺可有效去除藻类.试验还表明,次氯酸钠杀藻能力强,而PPC可有效改善处理水的沉淀性能,因此,两者联用可显著提高除藻效果.  相似文献   

14.
随着我国《生活饮用水卫生标准》(GB 5749-2022)的实施,城市供水水质进一步提高的同时给部分仅使用常规处理工艺水厂的带来了挑战。为确保2-甲基异莰醇(2-MIB)稳定达标,常规处理工艺自来水厂将使用投加粉末活性炭的方法达到去除的目的。通过系统性研究实际生产中粉末活性炭的投加量、吸附时间、投加点对2-MIB去除的影响,结合出厂水水质、运行管理效率和经济性评价,确定应用粉末活性炭去除饮用水中2-MIB是可行的技术。结果表明,当原水2-MIB浓度为(61.2±3.70) ng/L时,在0~330 min吸附时间内,随着吸附时间延长,投加5~40 mg/L的粉末活性炭2-MIB的去除率增加;当吸附时间为300 min时,投加40 mg/L的粉末活性炭能将2-MIB浓度为(61.05±2.24) ng/L的原水降至低于10 ng/L;多级投加粉末活性炭对2-MIB去除效果明显优于原水单级投加,原水2-MIB浓度为(63.85±22.13) ng/L时,多级投加50 mg/L粉末活性炭2-MIB去除率(85.1±2.63)%。投加30 mg/L的粉末活性炭能将原水中高锰酸盐指数平均去除率从...  相似文献   

15.
针对严寒地区传统常规工艺难以处理低温条件下水源水中氨氮超标的问题,采用实验室自制改性壳聚糖锌(CTS-Zn)强化聚氯化铝(PAC)混凝工艺对低温低浊氨氮污染水源水的处理效果进行研究。试验以辽河流域水源为研究对象,采用响应面试验分析设计软件(BOX-Behnken Design),考察了改性壳聚糖锌与聚氯化铝在低温条件下对氨氮、浊度、UV254去除效果最佳的投加量与投加方式,并且进行了改性壳聚糖锌强化聚氯化铝处理反应机理分析。试验结果表明,在温度为4℃时,改性壳聚糖锌可强化聚氯化铝的混凝效果,最佳投加工艺为同时投加0.3mg/L的CTS-Zn与20mg/L的PAC,处理后对原水中的氨氮、浊度、UV_(254)的去除率分别为30.02%、78%、60.8%,比相同条件下单独投加PAC工艺有明显的水质改善效果。该研究成果可为严寒地区水厂工艺提标改造提供技术支持。  相似文献   

16.
中试研究表明,常规处理(混凝—沉淀—过滤)可以将含油约为10mg/L的原水处理达标,并且除油率不受混凝剂投加量的影响。油污染浓度为7.2~18mg/L的原水经混凝沉淀去除的效率基本相同。20mg/L的油污染仅通过常规处理无法达标,需采用投加粉末活性炭(PAC)的强化混凝或颗粒活性炭(GAC)的强化过滤,即投加40mg/L的PAC,或在过滤阶段铺40cmGAC层的炭砂滤柱。KMnO4和Cl2的预氧化对除油效果无影响。  相似文献   

17.
聚合氯化铝铁强化混凝去除藻类试验研究   总被引:1,自引:0,他引:1  
采用聚合氯化铝铁,对微污染黄河水库水进行了强化混凝除藻试验.试验结果表明:针对原水水质,PAFC的最佳投加量为15mg/L,此时浊度和叶绿素a的去除率分别为94.67%和80.15%;PAFC的最佳pH范围是5.0~9.0,试验过程中无需对原水进行调节pH值;投加高分子助凝剂(JY)对原水的浊度、高锰酸盐指数和叶绿素a有一定的去除效果,助凝剂与混凝剂的复配可改善PAFC的混凝去除效果,助凝剂JY的投加量为0.3mg/L时,叶绿素a的去除率可提高12.9%.  相似文献   

18.
采用烧杯试验考察了常规混凝、预加石灰乳混凝以及硫化钠沉淀联合强化混凝对模拟突发性汞污染原水中汞的去除效果。通过硫化钠投加量、pH、2种混凝剂和3种助凝剂及其投加量对除汞效果的影响试验,优化了硫化钠沉淀联合强化混凝法除汞。结果表明,常规混凝汞去除率为23.5%~31.8%;预加石灰乳混凝的汞去除率为32.8%~79.8%;硫化钠沉淀联合强化混凝的除汞效果最好,平均去除率大于90%。硫化钠的最佳投量比为1∶2(Hg2 ∶Na2S.9H2O),在过量200%以下出水硫离子均不超标。pH在8以上可确保硫化钠充分发挥作用。PAC最佳投加量为20mg/L,PAM最佳投加量为0.1mg/L。为期30天规模为4m3/h的中试验证了优化后的硫化钠沉淀联合强化混凝应急处理方法对不同汞污染程度的原水的除汞效果与小试基本一致。用硫化钠沉淀联合强化混凝应急除汞,在汞超标100倍以下,过滤出水可达标,在汞超标60倍以下,沉淀出水可达标。处理费用为0.02588元/m3。  相似文献   

19.
针对株洲市自来水公司湘江水源水和出厂水水质 ,进行强化混凝试验研究。试验表明 ,采用高锰酸钾 粉末活性炭联用组合工艺 ,对老水厂改造 ,提高除污去浊效率 ,确实是一种经济有效的手段。高锰酸钾作为强氧化剂 ,降解有机物效果较理想 ,粉末活性炭对水中的小分子有机物有很好的吸附作用 ,有利于去色除味。两者组合同时用于常规净水工艺流程 ,使之协同作用 ,效果更为显著。当原水CODMn为 4 0 3mg/L ,浊度为 30NTU ,UV2 54为0 33,NH3 -N为 0 4 6mg/L时 ,投加聚合氯化铝 2 0mg/L ,沉淀水相应水质参数分别为 :2 72mg/L ,1 86NTU ,0 0 88,0 2 8mg/L ,去除率分别为 32 5 % ,93 8% ,73 3% ,39 1% ;采用高锰酸钾 粉末活性炭联用组合工艺 ,高锰酸钾投加量0 2mg/L ,聚合氯化铝投加量 2 0mg/L ,粉末活性炭投加量10mg/L ,沉淀水相应水质参数分别为 :1 87mg/L ,1 4 3NTU ,0 0 3,0 2 0mg/L ,而滤后水相应水质参数为 :0 93mg/L ,0 81NTU ,0 0 3,0 19mg/L ,去除率为 76 5 % ,97 3% ,90 9% ,5 8 7%。强化混凝正交试验表明 :助凝剂、混凝剂投加顺序即投加点以及高锰酸钾投加量 ,对UV2 54,NH3 -N及浊度去除均有显著影响。高锰酸钾与聚合氯化铝同时投加 ,30s后再投加粉末活性炭 ,效果最好。  相似文献   

20.
通过小试考察了聚二甲基二烯丙基氯化铵(PDM)复配硫酸铝(AS)、氯化高铁(FC)、聚氯化铝(PAC)和聚硫酸铁(PFS)以及单独采用PAC处理某水厂春季嘉陵江水源水的效果,选择了复配比例为1:100的PAC-PDM复合混凝剂处理该时期原水。通过对矾花与沉降性能的研究,发现复配比例越低,投药量越少,矾花粒径越小。当矾花粒径达到0.5 mm以上时,矾花的沉降性能较好,且矾花的沉降性能还与矾花的密实程度有很大关系。通过对PAC和PAC-PDM连续生产对比试验研究,在出厂水满足《生活饮用水卫生标准》(GB 5749—2006)要求的情况下,PAC-PDM和PAC的平均投药量分别约为8mg/L和14.3mg/L,在春季该水厂采用PAC-PDM处理嘉陵江原水较单独采用PAC约节省30%混凝剂费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号