首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
平纹编织复合材料中纤维束波动效应会引起随动材料主方向变化及面外剪切应力集中,为了研究其对平纹编织复合材料力学性能及损伤行为的影响,提出改进的像素法细观有限元单胞模型。模型根据纤维束波动曲线定义了材料主方向的变化,采用Hashin准则模拟纤维束的损伤起始,并引入剪切修正因子考虑面外剪切应力对面内拉伸损伤的影响。模型可以预测平纹编织复合材料的面内拉伸强度和损伤演化过程,结果表明:纤维束材料主方向波动会引起平纹编织复合材料面内拉伸强度下降;面外剪切应力集中是导致复合材料最终失效的主要原因,且随着剪切修正因子增大,复合材料面内拉伸强度显著降低;纤维束材料主方向波动和面外剪切应力集中均对平纹编织复合材料的损伤行为和破坏机理产生了影响,需要在数值分析中对其进行准确描述。   相似文献   

2.
A rate dependent constitutive model for woven reinforced thermoplastic matrix composites at forming temperatures is proposed in this work. The model is formulated using a stress objective derivative based on the fibre rotation. Nonlinear shear behaviour is modelled as a polynomial function and the rate dependence is described using a Cowper–Symonds overstress law formulated in terms of shear angle rate. The model parameters are determined by means of bias extension tests. The applicability of the material model is validated through a forming experiment.  相似文献   

3.
An analytical model to predict the compressive and tensile response of woven composites up to failure is proposed. The model is based on a beam supported by an elastic foundation. The elastic foundation provides both normal and shear support. Its characteristics are derived from kinematic models for the deformation of the weave and account for: (i) weave effect, (ii) support provided by the adjacent layers, and (iii) properties of matrix and transverse tows.  相似文献   

4.
针对缠绕复合材料交叉起伏区域的细观结构,建立了一种细观分析模型。首先,将纤维交叉起伏区域划分为环向交叉起伏区和螺旋交叉起伏区2种类型;然后,以缠绕面为基准,用平行横截面将起伏区域空间结构模型离散化为多个子模型,运用纤维束起伏角、富树脂区域尺寸、纤维束的体积分数、纤维束的横截面形状及尺寸等细观参数来描述缠绕复合材料交叉起伏区域的细观结构。基于所建立的细观模型及层合板理论,提出了缠绕复合材料交叉起伏区域的等效刚度计算方法。通过算例研究了纤维束截面、纤维束起伏角以及富树脂区体积分数等细观参数对局部区域等效刚度的影响。结果表明:环向交叉起伏区的弹性模量比螺旋交叉起伏区下降得更为明显;在富树脂区域,弹性模量和剪切模量降低较为明显,而泊松比则有所增大。纤维束厚度增加及纤维束截面变化对交叉起伏区域等效刚度会产生明显影响。   相似文献   

5.
通过实验系统研究了三维正交机织玻璃纤维/环氧树脂复合材料厚度方向和面内方向的动、 静态压缩力学性能。结果表明, 动、 静态压缩载荷作用下该材料响应表现出明显的各向异性、 非线性和应变率敏感性。针对三维正交机织玻璃纤维/环氧树脂复合材料高速变形过程中不同形式的内部缺陷和微损伤的演化, 提出了一个依赖应变、 应变率的宏观损伤量, 建立了一种含损伤的非线性黏弹性本构模型。采用数据处理方法拟合了其本构方程材料参数, 在加载过程中, 模型计算值与实验结果吻合较好。  相似文献   

6.
The low velocity impact behavior of three layer thermoplastic laminates consisting of woven glass fiber and polypropylene has been investigated for two different fiber volume configurations. Panels with configurations of 50/50 and 20/80 in the warp and fill directions were subjected to low velocity impact energies between 4 and 16 J using an instrumented dropping weight impact tower. Load vs. displacement plots showed the excellent energy absorbing capabilities exhibited by the woven composites. Both configurations dissipated approximately 75% of the 16 J incident impact energy. An energy-balance model was used to successfully predict the impact response of the woven thermoplastic composites. The impact damaged plates were tested under four point bend (4 PB) loading conditions. Results showed a reduction in flexural strength and modulus as the impact energy increased. A simple compression molding damage repair process was applied to the 16 J impacted composite plates. 4 PB testing of the repaired samples revealed a significant recovery in the flexural strength and modulus of the thermoplastic woven composite with both fiber configurations.  相似文献   

7.
The mechanical performance of woven composites was analyzed focusing on their nonlinear and rate dependent asymmetric/anisotropic deformation behavior. Three key characteristics were identified which are indispensable for realistically simulating the mechanical performance of woven composites: the asymmetric material behavior between tension and compression, its anisotropic and nonlinear evolution and rate dependency. To include all three characteristics into the nonlinear finite element analysis for woven composites, a phenomenological constitutive equation was developed based on an elasto-viscoplastic theory using the modified Drucker–Prager yield criterion and, in particular, developing the anisotropic nonlinear hardening law. A characterization method using both uniaxial tensile and compressive tests at different strain rates was proposed to determine the material properties for the constitutive equation. Then, the developed constitutive equation was incorporated into a finite element code and was validated by comparing the finite element simulation of the three points bending test with experiments.  相似文献   

8.
Monotonic, multi-step and cyclic short beam shear tests were conducted on 2D and 3D woven composites. The test results were used to determine the effect of z-yarns on the inter-laminar shear strength as well as the multi-loading behavior. The presence of z-yarns was found to affect not only the inter-laminar shear strength of the composite but also the behavior of the composite beyond the elastic limit. Microscopic examination of the damaged specimens revealed large delamination cracks in 2D woven composites while delamination cracks were hindered by z-yarns in 3D composites. This crack arrest phenomena resulted in a reduction in inter-laminar crack lengths and a higher distribution of the micro-cracks throughout the 3D composite. The multi-step and cyclic loading tests are found to be useful in the monitoring of specimen behavior during short beam shear testing. The induced damage was quantified in terms of the loss of strength and stiffness during each loading cycle. It was found that while the 2D composites have higher damage resistance, the 3D composites have a higher damage tolerance.  相似文献   

9.
The dynamic behavior of a woven glass-fiber-reinforced polymer composite at different strain rates was investigated. Regarded as a transversely isotropic material, dynamic compression tests of the composite in the normal and tangent directions were conducted by Split-Hopkinson pressure-bar devices. The experimental results show: (1) This composite is a viscoelastic material, and the dynamic compression-failure stress of the material indicates a distinct strain-rate hardening effect. The compression-failure stress in the normal direction increases by almost 30% when the strain rate changes from 900/s to 2000/s. The failure stress in the tangent direction is enhanced by 34% when the strain rate increases from 700/s to 2000/s. The failure stresses of the composite depend linearly on the strain rates, and the corresponding strain-rate hardening factors are 0.14 and 0.046 for the normal and tangent directions, respectively. (2) The dynamic compression-failure stresses and failure strains in the normal direction are significantly larger than the corresponding values in the tangent direction at different strain rates. Based on these results, the modified ZWT viscoelastic model was adopted, and the constitutive relationships of the composite in two directions are presented for characterizing their dynamic compression response.  相似文献   

10.
In this study, experimental investigations on stitched and unstitched woven carbon/epoxy laminates under high strain rate compression loading are discussed. Stitched/unstitched laminates are fabricated with aerospace grade plain and satin weave fabrics with room temperature curing SC-15 epoxy resin using affordable vacuum assisted resin infusion molding process. The samples are subjected to high strain rate loading using modified compression split Hopkinson’s pressure bar at three different strain rates ranging from 320 to 1149 s−1. Results are discussed in terms of unstitched/stitched configuration, fabric type and loading directions. Dynamic compression properties are compared with those of static loading. Failure mechanisms are characterized through optical and scanning microscopy.  相似文献   

11.
In this research, tensile and flexural performance of tri layer oil palm empty fruit bunches (EFB)/woven jute (Jw) fibre reinforced epoxy hybrid composites subjected to layering pattern has been experimentally investigated. Sandwich composites were fabricated by hand lay-up technique in a mould and cured with 105 °C temperatures for 1 h by using hot press. Pure EFB and woven jute composites were also fabricate for comparison purpose. Results showed that tensile and flexural properties of pure EFB composite can be improved by hybridization with woven jute fibre as extreme woven jute fibre mat. It was found that tensile and flexural properties of hybrid composite is higher than that of EFB composite but less than woven jute composite. Statistical analysis of composites done by ANOVA-one way, it showed significant differences between the results obtained. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy.  相似文献   

12.
基于实验观察和理论研究, 重点分析了材料内部区域纤维束的空间构型, 建立了一个新的三维实体细观结构模型, 并指出了编织工艺参数和模型细观结构参数之间的关系。该模型较真实地反映了纤维束之间的相互挤压变形方式, 纤维束横截面积沿纤维束轴向不断变化, 更符合三维四向编织复合材料的实际结构。基于刚度体积平均及柔度体积平均混合思想, 建立了相应的刚度预报模型。用该模型计算编织复合材料几何特性及工程弹性常数的数值结果与试件实测数据吻合, 表明了该模型的合理有效性, 为进一步研究三维编织复合材料的拉伸强度及破坏机制提供了基础。  相似文献   

13.
利用Gleeble-3500热模拟试验机对Mg-9Al-3Si-0.375Sr-0.78Y合金试样进行等温恒应变速率压缩实验,研究其在温度250~400℃、应变速率0.001~10s~(-1)条件下的热变形行为。结果表明:在热变形过程中,峰值应力随着应变速率的降低和温度的升高而减小,且峰值应力对应变速率的敏感性随着变形温度的下降而增强。建立了考虑应变的热变形Arrhenius本构模型,模型精度良好,在300,350℃及0.001~10s~(-1)范围内,模型的平均绝对误差分别为1.57%和1.76%;合金的平均变形激活能为183.58k J/mol,平均应变速率敏感指数为0.1616。热变形过程中,α-Mg相呈现明显的动态再结晶特征,β-Mg17Al12相尺寸减小且分布均匀,初生Mg_2Si相较小。在低温(250~300℃)变形时,动态再结晶仅发生在晶界处。在高温(350~400℃)变形时,初生α-Mg晶粒发生了明显的动态再结晶。随着温度的增加和应变速率的降低,再结晶程度提高,再结晶晶粒逐渐长大。  相似文献   

14.
In this paper an attempt has been made to check the extent of validity of the Tsai-Hill equation applied to polymer–polymer microfibril reinforced composites (MFCs), in which the reinforcing elements represent microfibrils with diameters around 1 μm and aspect ratios of approximately 100. For this purpose compression moulded plates of polypropylene/poly(ethylene terephthalate: 70/30 by wt%) composites have been prepared and their structures are established by wide angle X-ray scattering and scanning electron microscope (SEM) analysis. The tensile tests of cut specimens at various angles ( with respect to the uniaxially aligned microfibrils) show the degree of agreement with Tsai-Hill predictions. The measured values are slightly higher than the calculated ones and this finding is explained by the higher aspect ratios of microfibrils, their more homogenous distribution and most importantly, by the better matrix/reinforcement adhesion in the case of MFCs as compared to the common composites. The fracture mechanism as determined from the SEM observations on the fracture surfaces is also discussed and a good agreement with the mechanical behaviour is found.  相似文献   

15.
朱忠锋  王文炜 《复合材料学报》2017,34(10):2367-2374
考虑玄武岩纤维增强树脂合物基复合材料(BFRP)格栅层数和水泥基复合材料(ECC)配比等因素,对BFRP增强大掺量粉煤灰/矿粉ECC棒骨试件进行了静力单轴拉伸试验,研究掺加增强粉煤灰/矿粉ECC的抗拉力学性能。结合试验数据,基于Richard和Abbot的弹塑性应力-应变公式提出掺加增强ECC的应力-应变本构关系模型。试验结果表明:随着掺加层数的增加,格栅增强ECC的极限抗拉强度显著增大。同配合比掺矿粉制成的ECC抗压强度、开裂应变及应力高于掺粉煤灰制成的ECC。掺加增强掺矿粉ECC试件相对掺粉煤灰ECC试件具有较好的抗拉力学性能。计算结果表明,建立的单轴受拉本构关系模型可以有效地预测掺加增强ECC的应力-应变关系和极限抗拉强度。  相似文献   

16.
耿昊  朱顺新  刘勇 《复合材料学报》2017,34(6):1308-1315
采用放电等离子烧结法(SPS)制备出30%Cr-Cu复合材料,对其致密度、硬度和导电率等相关性能进行测试,并观察分析该复合材料的显微组织。利用Gleeble-1500D型热模拟试验机在变形温度650~950℃、应变速率0.001~10s-1、变形量60%的条件下对30%Cr-Cu复合材料进行热模拟压缩试验。对热压缩试验得到的真应力-应变数据进行拟合、计算和分析,构建该复合材料的本构方程,同时得到材料的加工硬化率θ,利用材料的lnθ-ε曲线出现有拐点和-(lnθ)/ε-ε曲线对应有最小值这一判据,分析该复合材料的动态再结晶临界条件。结果表明:30%Cr-Cu复合材料的真应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随应变速率的增加和温度的降低而升高;该复合材料的lnθ-ε曲线出现拐点,-(lnθ)/ε-ε曲线对应有最小值,该最小值所对应的应变为临界应变εc,且εc随变形温度的升高和应变速率降低而减小,εc与Zener-Hollomon参数Z的函数关系为εc=2.38×10-3 Z0.1396。  相似文献   

17.
陈煊  程礼  陈卫  李玉龙 《复合材料学报》2016,33(12):2846-2853
采用分离式Hopkinson拉杆装置和电子万能试验机研究了二维C/SiC复合材料在4种应变率(0.001、0.010、90.000和350.000 s-1)下的拉伸力学性能,计算并验证了动态试验中的应力平衡状态;采用SEM分析了复合材料在不同应变率下的破坏断口和失效机制;建立了复合材料包含损伤和应变率相关的本构方程。结果表明:二维C/SiC复合材料的应力-应变曲线都表现出非线性的特征。随着应变率的增加,二维C/SiC复合材料的拉伸强度从204 MPa增加到270 MPa,增加了33%,这表明复合材料的拉伸强度具有较强的应变率敏感性。复合材料在准静态和动态加载下表现出不同的破坏模式是由材料内部界面行为的应变率效应造成的。   相似文献   

18.
The viscoelastic/rate-sensitive plastic constitutive law to describe the non-linear, anisotropic/asymmetric and time/rate-dependent mechanical behavior of fiber-reinforced (sheet) composites were developed as discussed in Part I along with experimental procedures to obtain the material parameters for the woven fabric composite. Here, numerical formulations were developed. For verification purposes, finite element simulation results based on the proposed constitutive law were compared with experiments for the time-dependent springback in rate-dependent three point bending tests.  相似文献   

19.
The present work, first of two parts, deals with three types of woven carbon/carbon (C/C) composites having differentiations during the manufacturing procedure, which influences their fibre/matrix interface. All material types were tested under tensile loading in a load–unload–reload configuration, with online acoustic emission monitoring. Unsupervised pattern recognition algorithms were utilized to classify the acoustic emission (AE) data recorded during the tests. The resulted clusters, concluded by the analysis of AE hits, are associated with the damage mechanisms of the material, activated at the different load levels, and significant remarks were extracted regarding the damage evolution and its differentiation according to the different fibre/matrix interfaces. Emphasis is given on the impact of the different interface types upon the total mechanical behavior and damage accumulation at the test coupons. A qualitative evaluation of the interfaces using non-destructive testing data is also attempted. This first part intends to propose methodologies and procedures to analyze data from online acoustic emission monitoring in order to extract useful information regarding the damage evolution within C/C materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号