首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The use of chip-scale packages (CSPs) has expanded rapidly, particularly in portable electronic products. Many CSP designs will meet the thermal cycle or thermal shock requirements for these applications. However, mechanical shock (drop) and bending requirements often necessitate the use of underfills to increase the mechanical strength of the CSP-to-board connection. Capillary flow underfills processed after reflow provide the most common solution to improving mechanical reliability. However, capillary underfill dispense, flow, and cure steps and the associated equipment add cost and complexity to the assembly process. Corner bonding provides an alternate approach. Dots of underfill are dispensed at the four corners of the CSP site after solder paste print but before CSP placement. During reflow, the underfill cures, providing mechanical coupling between the CSP and the board at the corners of the CSP. Since only small areas of underfill are used, board dehydration is not required. This paper examines the manufacturing process for corner bonding including dispense volume, CSP placement, and reflow. Drop test results are then presented. A conventional, capillary process was used for comparison of drop test results. Test results with corner bonding were intermediate between complete capillary underfill and nonunderfilled CSPs. Finite-element modeling results for the drop test are also included.  相似文献   

2.
Three underfill options compatible with lead-free assembly have been evaluated: capillary underfill, fluxing underfill, and corner bond underfill. Chip scale packages (CSPs) with eutectic Sn/Pb solder were used for control samples. Without underfill, lead-free and Sn/Pb eutectic drop test results were comparable. Capillary flow underfills, dispensed and cured after reflow, are commonly used in CSP assembly with eutectic Sn/Pb solder. With capillary flow underfill, the drop test results were significantly better with lead-free solder assembly than with Sn/Pb eutectic. Fluxing underfill is dispensed at the CSP site prior to CSP placement. No solder paste is printed at the site. The CSP is placed and reflowed in a standard reflow cycle. A new fluxing underfill developed for compatibility with the higher lead-free solder reflow profiles was investigated. The fluxing underfill with lead-free solder yielded the best drop test results. Corner bond underfill is dispensed as four dots corresponding to the four corners of the CSP after solder paste print, but before CSP placement. The corner bond material cures during the reflow cycle. It is a simpler process compared to capillary or fluxing underfill. The drop test results with corner bond were intermediate between no underfill and capillary underfill and similar for both lead-free and Sn/Pb eutectic solder assembly. The effect of aging on the drop test results with lead-free solder and either no underfill or corner bond underfill was studied. Tin/lead solder with no underfill was used for control. This test was to simulate drop performance after the product has been placed in service for some period of time. There was degradation in the drop test results in all cases after 100 and 250 h of storage at 125/spl deg/C prior to the drop test. The worst degradation occurred with the lead-free solder with no underfill.  相似文献   

3.
The hygrothermal and mechanical reliability of board-level packages with various underfills under sequential temperature and humidity (TH) testing and drop testing were investigated. Board-level packages with underfill had greater resistance to drop shock than that without underfill, indicating that underfill protects the package from failure by absorption of the applied drop shock. The underfill, which was composed of polypropylene glycol epoxy resin and silane, exhibited good reliability for drop shock because of the improved adhesion of the underfill compared with that without the polypropylene glycol epoxy resin and silane. In addition, the drop reliability of board-level packages with underfill decreased with increasing TH test duration. Adhesion between the substrate and underfill or between the solder and underfill was decreased by moisture absorption. Components positioned at the board center were more susceptible to failure by drop shock than were corner components.  相似文献   

4.
Double bump flip-chip assembly   总被引:1,自引:0,他引:1  
Capillary underfill remains the dominate process for underfilling Hip-chip die both in packages and for direct chip attach (DCA) on printed circuit board (PCB) assemblies. Capillary underfill requires a post reflow dispense and cure operation, and the underflow time increases with increasing die area and decreasing die-to-substrate spacing. Fluxing or no-How underfills are dispensed prior to die placement and cure during the solder reflow cycle. Since filler particles in the fluxing underfill can be trapped between the solder ball and the substrate pad during placement, the filler content of fluxing underfills is typically limited to <20% or assembly yield drops dramatically. At 20% filler concentration, the coefficient of thermal expansion (CTE) of the underfill is near that of the bulk resin (50-80 ppm//spl deg/C). In this paper, a double bump Hip-chip process is described. A filled capillary underfill is coated onto a wafer and cured. The wafer is then polished to expose the solder bumps. A second solder bump is formed over the original bump by stencil printing solder paste. After dicing, the die is assembled to the PCB using unfilled fluxing underfill. In the resulting structure, the low CTE underfill is near the low CTE Si die, and the higher CTE underfill is in contact with the PCB. In addition, the standoff height is increased compared to a conventional single bump assembly. In air-to-air thermal shock tests, the double bump assembly was /spl sim/ 1.5 X more reliable than the conventional single bump construction with fluxing underfill. Modeling results are also presented.  相似文献   

5.
Underfills are traditionally applied for flip-chip applications. Recently, there has been increasing use of underfill for board-level assembly including ball grid arrays (BGAs) and chip scale packages (CSPs) to enhance reliability in harsh environments and impact resistance to mechanical shocks. The no-flow underfill process eliminates the need for capillary flow and combines fluxing and underfilling into one process step, which simplifies the assembly of underfilled BGAs and CSPs for SMT applications. However, the lack of reworkability decreases the final yield of assembled systems. In this paper, no-flow underfill formulations are developed to provide fluxing capability, reworkability, high impact resistance, and good reliability for the board-level components. The designed underfill materials are characterized with the differential scanning calorimeter (DSC), the thermal mechanical analyzer (TMA), and the dynamic mechanical analyzer (DMA). The potential reworkability of the underfills is evaluated using the die shear test at elevated temperatures. The 3-point bending test and the DMA frequency sweep indicate that the developed materials have high fracture toughness and good damping properties. CSP components are assembled on the board using developed underfill. High interconnect yield is achieved. Reworkability of the underfills is demonstrated. The reliability of the components is evaluated in air-to-air thermal shock (AATS). The developed formulations have potentially high reliability for board-level components.  相似文献   

6.
Adhesion is one of the key properties of underfills used in flip chip assemblies. This paper characterizes the adhesion strengths of no-flow underfill materials to various die passivations using the shear test techniques. A novel shear test vehicle with planner underfill layers between the die and substrate is presented. The adhesion strengths and failure modes of the no-flow underfill materials during shear testing correlate well with their thermal shock reliability test results. Underfill adhesion related failures such as delamination and crack are investigated and correlated between flip chip assemblies and shear test vehicle assemblies without solder joint interconnects  相似文献   

7.
In this paper, the reliability of the microBGA assembly using no-flow underfill is studied by thermal shock and bending cycle. Recently, a more promising underfill technology so-called “no-flow underfill” has been invented to cope with the limitations, which promises low cost assembly. The research results of self-alignment about no-flow underfill show that the self-alignment of microBGA using no-flow underfill is inferior to that using flux. There is residual displacement more or less in various offset volumes. Therefore, the effect of no-flow underfill on reliability of microBGA assembly needs to be investigated systematically. In this study, samples are reflowed with an optimized “rapid ramp” temperature profile, and using flux and no-flow underfill, respectively. One group of samples are subjected to thermal shock at temperature −40–125°C, and dwell time 15 min. Another group of samples is subjected to cyclic bending at a bending speed of 300 mm/min between 500 and −500 μ at the center of a microBGA package. The fatigue lifetime distribution is examined with the aid of “Weibull” method to investigate the effect of no-flow underfill on the reliability of microBGA assembly, and the failure mechanism is investigated by using the scanning electron microscope. Our experiment results show that the no-flow underfill can greatly enhance the mechanical fatigue lifetime. The underfilled material improves the stress distribution in solder joints. For assemblies with no underfills, the fracture always occurs in the outermost solder joint. The issue is improved by underfilling with no-flow underfill. However, the no-flow underfill cannot improve the thermal reliability of microBGA assembly, because the coefficient of thermal expansion (CTE) of no-flow underfill is too great at present. It is necessary to reduce the no-flow underfill CTE, so as to apply actually to BGA and CSP etc. Moreover, it is displayed that the fatigue lifetime of the residual displacement solder is less than 50% of that of the non-misaligned solder. The residual displacement is formed when the misalignment is >25% during mounting. Therefore, when the no-flow underfill is used in microBGA assembly, care must be taken to keep the mount position, and misalignment <25%.  相似文献   

8.
Flip chip attach on organic carriers is a novel electronic packaging assembly method which provides advantages of high input/output (I/O) counts, electrical performance and thermal dissipation. In this structure, the flip chip device is attached to organic laminate with predeposited eutectic solder. Mechanical coupling of the chip and the laminate is done via underfill encapsulant materials. As the chip size increases, the thermal mismatch between silicon and its organic carrier becomes greater. Adhesion becomes an important factor since the C4 joints fail quickly if delamination of the underfill from either chip or the solder mask interface occurs. Newly developed underfills have been studied to examine their properties, including interfacial adhesion strength, flow characteristics, void formation and cure kinetics. This paper will describe basic investigations into the properties of these underfills and also how these properties related to the overall development process. In addition, experiments were performed to determine the effects on adhesion degradation of flip chip assembly processes and materials such as IR reflow profile, flux quantity and residues. Surface treatment of both the chip and the laminate prior to encapsulation were studied to enhance underfill adhesion. Accelerated thermal cycling and highly accelerated stress testing (HAST) were conducted to compare various underfill properties and reliability responses  相似文献   

9.
The formation of underfill voids is an area of concern in the low cost, high throughput, or "no-flow" flip chip assembly process. This assembly process involves placement of a flip chip device directly onto the substrate pad site covered with pre-dispensed no-flow underfill. The forced motion of chip placement causes a convex flow front to pass over pad and solder mask-opening features promoting void capture. This paper determines the effects of substrate design on the phenomena of underfill voiding using the no-flow process. A full-factorial design experiment analyzes several empirically determined factors that can affect void capture in no-flow processing. The substrate design parameters included pad height, solder mask opening height, pad/solder mask opening separation, and pad pitch. The process parameters include chip placement velocity and underfill viscosity. The process robustness is measured in terms of the number of voids created during chip placement, and is further analyzed for the location and any visible modes of void formation. The goal of the work is to determine improved substrate designs to minimize voiding in flip chip processing using no flow underfills.  相似文献   

10.
The curing conditions and material properties such as the TCE (thermal coefficient of expansion), Tg (glass transition temperature), flexural storage modulus, tangent delta, and moisture content of nine different underfill materials from three different vendors are measured. Their flow rate and the effect of moisture content on mechanical (shear) strength in solder bumped flip chips on organic substrate are also determined experimentally. Furthermore, their effects on the electrical performance (voltage) of functional flip chip devices on organic substrate are measured. Finally, a simple methodology is presented for the selection of underfills from the measurement results of these nine different underfill materials  相似文献   

11.
Lead-free solder reflow process has presented challenges to no-flow underfill material and assembly. The currently available no-flow underfill materials are mainly designed for eutectic Sn-Pb solders. This paper presents the assembly of lead-free bumped flip-chip with developed no-flow underfill materials. Epoxy resin/HMPA/metal AcAc/Flux G system is developed as no-flow underfills for Sn/Ag/Cu alloy bumped flip-chips. The solder wetting test is conducted to demonstrate the fluxing capability of the underfills for lead-free solders. A 100% solder joint yield has been achieved using Sn/Ag/Cu bumped flip-chips in a no-flow process. A scanning acoustic microscope is used to observe the underfill voiding. The out-gassing of HMPA at high curing temperatures causes severe voiding inside the package. A differential scanning calorimeter (DSC) used to study the curing degree of the underfill after reflow with or without post-cure. The post-curing profiles indicate that the out-gassing of HMPA would destroy the stoichiometric balance between the epoxy and hardener, and result in a need for high temperature post-cure. The material properties of the underfills are characterized and the influence of underfill out-gassing on the assembly and material properties is investigated. The impact of lead-free reflow on the material design and process conditions of no-flow underfill is discussed.  相似文献   

12.
Silica particles are used as a filler material in electronic underfills to reduce coefficient of thermal expansion of the underfill-epoxy matrix. In traditional underfills, the size of silica particles is in the micrometer range. Reduction in particle sizes into the nanometer range has the potential of attaining higher volume fraction particle loading in the underfills and greater control over underfill properties for higher reliability applications. Presently, no-flow underfills have very low or no filler content because micron-size filler particles hinder solder joint formation. Nano-silica underfills have the potential of attaining higher filler loading in no-flow underfills without hindering solder interconnect formation. In this paper, property prediction models based on representative volume element (RVE) and modified random spatial adsortion have been developed. The models can be used for development of nano-silica underfills with desirable thermo-mechanical properties. Temperature dependent thermo-mechanical properties of nano-underfills have been evaluated and correlated with models in a temperature range of -175degC to 150degC. Properties investigated include, temperature dependent stress-strain, creep and stress relaxation behavior. Nano-underfills on 63Sn37Pb eutectic and 95.5Sn3.5Ag1.0Cu leadfree flip-chip devices have been subjected to thermal shock tests in the range of -55degC to 125degC and -55degC to 150degC, respectively. The trade-offs between using nano-fillers instead of micron-fillers on thermo-mechanical properties and reliability has been benchmarked.  相似文献   

13.
Fine pitch BGAs and chip scale packages have been developed as an alternative to direct flip chip attachment for high-density electronics. The larger solder sphere diameter and higher standoff of CSPs and fine pitch BGAs improve thermal cycle reliability while the larger pitch relaxes wiring congestion on the printed wiring board. Fine pitch BGAs and CSPs also allow rework to replace defective devices. Thermal cycle reliability has been shown to meet many consumer application requirements. However, fine pitch BGAs and CSPs have difficulty passing mechanical shock and substrate flexing tests for portable electronics applications. The fine pitch BGA used in the study was a 10 mm package with the die wire bonded. The package substrate was bismaleimide-triazine (BT) and the solder sphere diameter was 0.56 mm. Two types of underfill were examined. The first was a fast flow, snap cure underfill. This material rapidly flows under the package and can be cured in five minutes at 165°C using an in-line convection oven. The second underfill was a thermally reworkable underfill for those applications requiring device removal and replacement. The paper discusses the assembly and rework process. In addition, liquid-to-liquid thermal shock data is presented along with mechanical shock and flexing test results  相似文献   

14.
The failure of organic packages during thermal cycling is often associated with failure of the underfill by fracture. The fracture toughness of underfills measured by applying a mechanical stresses to the material at a constant temperature is used as a measure of the propensity of underfill fracture. However, this fracture toughness does not take into account transient temperature effects during thermal cycling. To include temperature effects a fracture toughness induced by applying thermal stresses is defined and a method to measure this thermally induced fracture toughness is described. Results on two commercial underfills are presented. Comparison of the conventional, mechanically induced fracture toughness and the new, thermally induced fracture toughness shows that underfill fracture toughness including thermal effects is significantly smaller than the conventional values. This indicates that the mechanical toughness method overestimates the underfill/package reliability that becomes subject to temperature change. The difference is explained using fracture energy concept.  相似文献   

15.
Fluxing underfill eliminates process steps in the assembly of flip chip-on-laminate (FCOL) when compared to conventional capillary flow underfill processing. In the fluxing underfill process, the underfill is dispensed onto the board prior to die placement. During placement, the underfill flows in a "squeeze flow" process until the solder balls contact the pads on the board. The material properties, the dispense pattern and resulting shape, solder mask design pattern, placement force, placement speed, and hold time all impact the placement process and the potential for void formation. A design of experiments was used to optimize the placement process to minimize placement-induced voids. The major factor identified was board design, followed by placement acceleration. During the reflow cycle, the fluxing underfill provides the fluxing action required for good wetting and then cures by the end of the reflow cycle. With small, homogeneous circuit boards it is relatively easy to develop a reflow profile to achieve good solder wetting. However, with complex SMT assemblies involving components with significant thermal mass this is more challenging.  相似文献   

16.
Studies have shown that underfill encapsulation dramatically improves the solder joint fatigue reliability of flip chip on board (FCOB) assemblies. The lack of reworkability of the underfill after the product is in the field has limited the integration of FCOB into cost sensitive electronic products and the continued proliferation of the FCOB technology will depend on the development of reworkable underfill materials systems. This paper presents data that correlates reliability performance to mechanical properties for twelve field reworkable underfill materials from three different suppliers. Their respective properties, processing parameters, and reliability performances are compared to the qualified, commercially available high performance underfills. Techniques were developed to redress the printed wiring board (PWB) site to enhance the reworked FCOB assembly yield. In addition, reliability performance results and failure analysis observations were compared to the first time nonreworked assemblies  相似文献   

17.
The no-flow underfill has been invented and practiced in the industry for a few years. However, due to the interfering of silica fillers with solder joint formation, most no-flow underfills are not filled with silica fillers and hence have a high coefficient of thermal expansion (CTE), which is undesirable for high reliability. In a novel invention, a double-layer no-flow underfill is implemented to the flip-chip process and allows fillers to be incorporated into the no-flow underfill. The effects of bottom layer underfill thickness, bottom layer underfill viscosity, and reflow profile on the solder wetting properties are investigated in a design of experiment (DOE) using quartz chips. It is found that the thickness and viscosity of the bottom layer underfill are essential to the wetting of the solder bumps. Chip scale package (CSP) components are assembled using the double-layer no-flow underfill process. Silica fillers of different sizes and weight percentages are incorporated into the upper layer underfill. With a high viscosity bottom layer underfill, up to 40 wt% fillers can be added into the upper layer underfill and do not interfere with solder joint formation.  相似文献   

18.
This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246°C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235°C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40°C to +125°C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts  相似文献   

19.
The thermomechanical reliability of chip-scale packages (CSPs) with various underfills was evaluated by measure the electrical resistance under thermal shock and four-point bending fatigue tests. The underfill containing cycloaliphatic-type epoxy resin had lower resistance than without cycloaliphatic-type epoxy resin under thermomechanical fatigue test because the cycloaliphatic-type epoxy resin was able to mechanically relax more than the other types. The lifetimes of the CSPs under thermomechanical fatigues were strongly dependent on the properties of the underfill.  相似文献   

20.
采用实验方法,确定了倒装焊SnPb焊点的热循环寿命.采用粘塑性和粘弹性材料模式描述了SnPb焊料和底充胶的力学行为,用有限元方法模拟了SnPb焊点在热循环条件下的应力应变过程.基于计算的塑性应变范围和实验的热循环寿命,确定了倒装焊SnPb焊点热循环失效Coffin-Manson经验方程的材料参数.研究表明,有底充胶倒装焊SnPb焊点的塑性应变范围比无底充胶时明显减小,热循环寿命可提高约20倍,充胶后的焊点高度对可靠性的影响变得不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号