首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
The 2% citric and formic acid solubilities of phosphate rock residues extracted from partially acidulated materials (20 and 35% acidulation) manufactured from two phosphate rocks (both ground and unground) in the presence of monocalcium phosphate, monosodium phosphate, calcium chloride, calcium sulphate, calcium carbonate, sodium carbonate and aluminium and iron sulphates have been examined. Such figures have been compared with previous results obtained for the equivalent unprocessed phosphate rocks. In general the effects of additives on the solubility of the phosphate rock residues were similar to those found for unprocessed phosphate rocks. However, the solubility figures were considerably lower for the 20% acidulated residues, while 2% formic acid solubilities for the 35% acidulated residues were also reduced. This would indicate that some deactivation of the phosphate rock had taken place during acidulation, the degree of which was dependent on the acidulation level and could be more readily observed in changes in 2% formic acid solubility than in 2% citric acid figures.  相似文献   

2.
Using soils with an acidic subsurface layer, three glasshouse experiments were carried out to evaluate the effect of placement method and application rate of triple superphosphate (TSP) and North Carolina phosphate rock (NCPR) on dry matter (DM) yields. Time of application of NCPR on DM yield response of wheat was also studied.For Experiment 1, soil was collected in depth intervals of 0–2; 4–6; 6–8; and 8–10 cm from a red earth (chromic luvisol). The treatments included two P sources (TSP and NCPR), three placement methods (broadcast, banded or mixed into the subsurface layer, 6–8 cm), and six application rates. In this P deficient soil with an acidic subsurface layer, there was relatively little effect of application method of TSP on wheat yield responses. The maximum dry matter yield responses for broadcast, band and mix application methods was 30, 42 and 50 %, respectively. Responses to NCPR broadcast, band and mix methods were 20, 9 and 44 %, respectively. Mixing NCPR into to acidic subsurface layer produced yields similar to those from TSP although a higher application rate of P as NCPR was needed to achieve this outcome.Treatments for Experiments 2 and 3 were time of application of NCPR (0 and 30 days before sowing) and rate of application of NCPR (0 and 40 mg P/pot). In Experiment 2 (same soil as Experiment 1) application of NCPR prior to sowing, resulted in higher Colwell P concentration than when applied at sowing, but time of application had no effect on final DM yields. Experiment 3 used a red podzolic (chromic luvisol) soil which had a lower P-status, was more acid and had a lower exchangeable Ca2+ concentration than the red earth. Application of NCPR prior to sowing resulted in lower DM yield than when it was applied prior to sowing.  相似文献   

3.
The effect of soil pH on the dissolution of phosphate rocks (PRs) and the subsequent availability of the dissolved inorganic phosphorus (Pi) to plants was examined in a volcanic soil adjusted to different pH values. Potassium dihydrogen orthophosphate (KH2PO4) and three PRs, Nauru (NPR), Jordan (JPR) and North Carolina (NCPR) were incubated with the pH-amended soils at a rate of 800µg P g–1 soil for 84 days. The extent of PR dissolution was determined by measuring the increases in the amount of 0.5 M NaOH extractable Pi (NaOH-P) in the PR treated soil over the control soil. The amount of plant available P was measured either by extracting with 0.5 M NaHCO3 or by growing ryegrass in soil samples incubated with the phosphate sources.At each pH the order of the extent of PR dissolution followed NCPR > JPR > NPR, which was consistent with the decreasing order of their chemical reactivities. As the pH decreased from 6.5 to 3.9 the dissolution of PRs increased from 29.3% to 83.5%, from 18.2% to 78.9%, and from 12.5% to 60.3% for NCPR, JPR and NPR, respectively. In contrast, as the soil pH decreased from 6.5 to 3.9, the proportion of the dissolved P extracted by 0.5 M NAHCO3 decreased from 38% to 5% and the proportion taken up by ryegrass plants decreased from 46% to 7%. This decrease in plant available P corresponded to an increase in the adsorption of inorganic P with a decrease in pH. However, the uptake of P from PR relative to that from KH2PO4 was higher at low pH than at high pH. Further, the amount of P taken up by plants was more closely related to the amount of NaHCO3 extractable P than to the amount of dissolved P present in the soil.  相似文献   

4.
Preparations and physico-chemical characterizations of NASICON-type compounds in the system Li1+xAlxA2−xIV(PO4)3 (AIV=Ti or Ge) are described. Ceramics have been fabricated by sol-gel and co-grinding processes for use as ionosensitive membrane for Li+ selective electrodes. The structural and electrical characteristics of the pellets have been examined. Solid solutions are obtained with Al/Ti and Al/Ge substitutions in the range 0≤x≤0·6. A minimum of the rhombohedral c parameter appears for x about 0·1 for both solutions. The grain ionic conductivity has been characterized only in the case of Ge-based compounds. It is related to the carrier concentration and the structural properties of the NASICON covalent skeleton. The results confirm that the Ti-based framework is more calibrated to Li+ migration than the Ge-based one. A grain conductivity of 10−3 S cm−1 is obtained at 25°C in the case of Li1·3Al0·3Ti1·7(PO4)3. A total conductivity of about 6×10−5 S cm−1 is measured on sintered pellets because of grain boundary effects. The use of such ceramics in ISE devices has shown that the most confined unit cell (i.e. in Ge-based materials) is more appropriate for selectivity effect, although it is less conductive.©  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号