共查询到20条相似文献,搜索用时 0 毫秒
1.
Satish Tailor R. M. Mohanty V. K. Sharma P. R. Soni 《Journal of Thermal Spray Technology》2014,23(7):1081-1088
6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type. 相似文献
2.
目的 改善铝合金的抗微动磨损性能.方法 采用超音速火焰喷涂技术在ZL114A铝合金表面制备铝青铜涂层,在不同温度(25、200、300℃)下对有、无涂层的ZL114A铝合金样品进行微动磨损测试,通过对涂层性能和磨痕形貌进行表征分析,探索铝青铜涂层的抗磨损性能.结果 铝青铜涂层均匀致密,与铝合金基体结合良好,显微硬度为279HV0.3,结合强度为74 MPa.不同温度(25、200、300℃)下,涂覆铝青铜涂层样品的平均微动摩擦系数分别为0.898、0.886、0.744,磨损率分别为10.249×10–7、0.035×10–7、0.207×10–7 m3/(N·m),相比基体的平均微动摩擦系数和磨损率,3种温度下分别下降了34.5%、42.9%和58.9%.对磨痕的形貌和三维轮廓的分析表明,在25、200、300℃下,铝青铜涂层的磨损机制不相同,25℃下为磨粒磨损和剥层,200℃下为磨粒磨损、剥层、氧化磨损和粘着磨损,300℃下为塑性变形、氧化磨损和粘着磨损.结论 制备的铝青铜涂层改善了基体的抗微动磨损性能. 相似文献
3.
采用多源磁控溅射物理气相沉积法在单晶硅表面制备梯度变化的非晶碳涂层(类金刚石薄膜),通过调整工艺参数获得厚度在1~2μm的非晶碳涂层;采用球-盘式摩擦磨损试验机探讨了非晶碳涂层在干燥空气、水润滑和油润滑环境下的摩擦磨损行为。结果表明:非晶碳涂层的摩擦因数基本保持在0.1左右,摩擦环境的变化对涂层的磨损率影响较大;非晶碳涂层在水润滑环境中的磨损率在10^-7mm^3/Nm数量级;在干燥空气摩擦环境中具有稳定的耐磨损性能,磨损率在10^-9mm^3/Nm数量级;特别在油润滑的环境下,非晶碳涂层的耐磨损性能更加优异。 相似文献
4.
Chaoping Jiang Hong Chen Gui Wang Yongnan Chen Yazhe Xing Chunhua Zhang Matthew Dargusch 《Journal of Thermal Spray Technology》2017,26(4):778-786
Amorphous coating technology is an attractive way of taking advantage of the superior properties of amorphous alloys for structural applications. However, the limited bonds between splats within the plasma-sprayed coatings result in a typically lamellar and porous coating structure. To overcome these limitations, the as-sprayed coating was treated by a laser-remelting process. The microstructure and phase composition of two coatings were analyzed using scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction. The wear resistance of the plasma-sprayed coating and laser-remelted coating was studied comparatively using a pin-on-disc wear test under dry friction conditions. It was revealed that the laser-remelted coating exhibited better wear resistance because of its defect-free and amorphous-nanocrystalline composited structure. 相似文献
5.
E. Sánchez E. Bannier M. D. Salvador V. Bonache J. C. García J. Morgiel J. Grzonka 《Journal of Thermal Spray Technology》2010,19(5):964-974
WC-12%Co coatings were deposited by atmospheric plasma spraying using conventional and nanostructured powders and two secondary
plasmogenous gases (He and H2). Coating microstructure and phase composition were characterized using scanning electron microscopy (SEM), transmission
electron microscopy (TEM), and x-ray diffraction techniques (XRD) techniques. This study examined wear and friction properties
of the coatings under dry friction conditions. SEM was used to analyze abraded surface microstructure. Coating microhardness
and fracture toughness were also determined. All coatings displayed strong decarburization as a result of WC decomposition,
which gave rise to the formation of secondary phases (W2C and W). A very fine undissolved WC crystalline dispersion coexisted with these new phases. TEM observation confirmed that
the matrix was predominantly amorphous and filled with block-type, frequently dislocated crystallites. Wear was observed to
follow a three-body abrasive mechanism, since debris between the ball and the coating surface was detected. The main wear
mechanism was based on subsurface cracking, owing to the arising debris. WC grain decomposition and dissolution were concluded
to be critical factors in wear resistance. The level of decomposition and dissolution could be modified by changing the plasmogenous
gas or feed powder grain size. The influence of the plasmogenous gas on wear resistance was greater than the influence of
feedstock particle size. 相似文献
6.
Xi Shi Xinjing Meng Qingdong Zhong Jian Yang Mingyong Shu Hongbo Han QuocBinh Bui 《Journal of Thermal Spray Technology》2016,25(5):1079-1086
In this study, Fe-Si nanoparticle composite coating (FSN) and Fe-Si microparticle composite coating (FSM) were prepared via atmospheric plasma spraying, and FSN was thermally treated under hydrogen atmosphere at 1120 °C for holding time of 2.5 h (TFSN). Under transmission electron microscopy, many unmelted nanoscale particles were observed in FSN, while no substantial particles were found in TFSN. On scanning electron microscopy analysis, pores and cracks were observed in FSM and FSN, while no defects were found in TFSN. Scanning electrochemical microscopy testing in 3.5 wt.% NaCl for 5 h revealed that FSM underwent severe pitting corrosion, FSN showed relatively minor pitting corrosion, and TFSN had no pitting corrosion. 相似文献
7.
High-Temperature Oxidation Behavior of NiCrA1Y Bond Coats and Stellite-6 Plasma-Sprayed Coatings 总被引:1,自引:0,他引:1
Ni–22Cr–10A1–1Y and Stellite-6 coatings were deposited on boiler-tube steels, namely ASTM-SA210-Grade A1, ASTM-SA213-T-11 and ASTM-SA213-T-22, by a shrouded plasma-spray process. The NiCrA1Y alloy powder was also sprayed as a bond coat before applying a Stellite-6 coating. The cyclic-oxidation behavior of the NiCrA1Y bond coats and Stellite-6 coating were evaluated at 900 °C. Visual observations and gravimetric data were measured at the end of each cycle. Finally, the scale was analyzed using X-ray Diffraction, Scanning-Electron Microscope, Energy-Dispersive X-Ray Studies and Electron-Probe Micro-Analyzer techniques. The coatings were found to be effective in increasing resistance to oxidation at the test temperature of 900 °C. The protection is higher in the case of the Stellite-6 coating. The protection is lesser for both coating types when T22 steel was the substrate and higher in the case of GrA1 steel. The deleterious behavior of Mo present in the T22 steel is perhaps responsible for conferring lesser protection. 相似文献
8.
Carbon nanotube-reinforced 2009Al (CNT/2009Al) composites with randomly oriented CNTs and aligned CNTs were fabricated by friction stir processing (FSP) and FSP-rolling, respectively. The CNT/2009A1 composites with aligned CNTs showed much better tensile properties at room temperature and elevated temperature compared with those with the randomly oriented CNTs, which is mainly attributed to larger equivalent aspect ratio of the CNTs and avoidance of preferential fracture problems. However, much finer grain size was not beneficial to obtaining high strength above 473 K. The aligned CNTs resulted in tensile anisotropy, with the best tensile properties being achieved along the direction of CNT aligning. As the off-axis angle increased, the tensile properties were reduced due to the weakening of the load transfer ability. Furthermore, aligned CNTs resulted in much lower coefficient of thermal expansion compared with randomly oriented CNTs. 相似文献
9.
Yu Bai Chunhua Ding Hongqiang Li Zhihai Han Bingjun Ding Tiejun Wang Lie Yu 《Journal of Thermal Spray Technology》2013,22(7):1201-1209
In this work, Y2O3 stabilized zirconia-based thermal barrier coatings (TBCs) were deposited by conventional atmospheric plasma spraying (APS) and high efficiency supersonic atmospheric plasma spraying (SAPS), respectively. The effect of Al2O3 layer stability on the isothermal growth behavior of thermally grown oxides (TGOs) was studied. The results revealed that the Al2O3 layer experienced a three-stage change process, i.e., (1) instantaneous growth stage, (2) steady-state growth stage, and (3) depletion stage. The thickness of Al2O3 scale was proved to be an important factor for the growth rate of TGOs. The SAPS-TBCs exhibited a higher Al2O3 stability and better oxidation resistance as compared with the APS-TBCs. Additionally, it was found that inner oxides, especially nucleated on the top of the crest, continually grew and swallowed the previously formed Al2O3 layer, leading to the granulation and disappearance of continuous Al2O3 scale, which was finally replaced by the mixed oxides and spinel. 相似文献
10.
Šárka Houdková Zdeněk Česánek Eva Smazalová František Lukáč 《Journal of Thermal Spray Technology》2018,27(1-2):179-195
Three commercially available chromium carbide-based powders with different kinds of matrix (Cr3C2-25%NiCr; Cr3C2-25%CoNiCrAlY and Cr3C2-50%NiCrMoNb) were deposited by an HVOF JP-5000 spraying gun, evaluated and compared. The influence of heat treatment on the microstructure and properties, as well as the oxidation resistance in a hot steam environment (p = 24 MPa; T = 609 °C), was evaluated by SEM and XRD with respect to their potential application in the steam power industry. The sliding wear resistance measured at room and elevated (T = 600 °C) temperatures according to ASTM G-133. For all three kinds of chromium carbide-based coatings, the precipitation of secondary carbides from the supersaturated matrix was observed during the heat treatment. For Cr3C2-25%NiCr coating annealed in hot steam environment as well as for Cr3C2-25%CoNiCrAlY coating in both environments, the inner carbide oxidation was recorded. The sliding wear resistance was found equal at room temperature, regardless of the matrix composition and content, while at elevated temperatures, the higher wear was measured, varying in dependence on the matrix composition and content. The chromium carbide-based coating with modified matrix composition Cr3C2-50%NiCrMoNb is suitable to replace the Cr3C2-25%NiCr coating in a hot steam environment to eliminate the risk of failure caused by inner carbide oxidation. 相似文献
11.
I. Ozdemir C. Tekmen Y. Tsunekawa T. Grund 《Journal of Thermal Spray Technology》2010,19(1-2):384-391
In this study, mechanically alloyed Al-12Si/TiB2/h-BN composite powder was deposited onto aluminum substrates by atmospheric plasma spraying. Wear performance of the coating was investigated with respect to the structural evolution of the composite powder coating. Non-lubricated ball-on-disk tests were used to examine the wear resistance of the coatings. The worn surfaces were examined using scanning electron microscopy and energy dispersive spectroscopy to elucidate the wear mechanisms operating at the sliding interface. It has been observed that TiB2 and in situ formed AlN and Al2O3 phases in combination with h-BN solid lubricant strongly affect the wear performance of the coating. 相似文献
12.
The quality of coatings made using thermal spray processes depends greatly on the degree of adhesion between the substrate and its coating. Yet the bonding mechanisms between a substrate and coating are not well understood. In this study, polyetheretherketone (PEEK) powder was plasma-sprayed to form single splats on aluminum substrates, which had undergone various surface treatments, including boiled (BT), etched (E, ET), and polished (PT), all of which had also been thermally treated to remove water from the substrate surface, with the exception of one etched aluminum substrate. Scanning electron microscopy was used to give an overview of the surface and splat morphology. The splat-substrate interfaces were studied in detail using focused ion beam imaging and transmission electron microscopy, to characterize microstructural features within the splat-substrate interface, including inter/intrasplat pores, pores along the splat-substrate interface, level of contact between the splat and the substrate, etc. The results showed that the splat-substrate interface for the BT and the E substrate surface had poor level of contact, with a high number of small pores (<1 μm) along the splat-substrate interface for the BT splat-substrate interface, and the formation of a near-continuous crevice between the PEEK splat and the aluminum substrate for the E substrate surface. The presence of the fine needle-like network of oxide layer on the BT substrate surface may have restricted the flow of the molten PEEK on the aluminum substrate, and the possible presence of physisorbed and chemisorbed water on the E substrate surface may have reduced the level of contact between the PEEK and the aluminum substrate. In contrast, specimens which had undergone thermal treatment to minimize the presence of water on the substrate surface, such as the ET and PT substrate surface, exhibited high level of contact at the splat-substrate interface. The number of pores for the ET and the PT splat-substrate interfaces were substantially lower than of the BT and E splat-substrate interface. 相似文献
13.
Chang-Jiu Li Hong-Tao Wang Guan-Jun Yang Chong-Gao Bao 《Journal of Thermal Spray Technology》2011,20(1-2):227-233
FeAl intermetallic compound coating was prepared by cold spraying using a mechanically alloyed Fe(Al) alloy powder followed by post-spray annealing at 950 °C. The high-temperature abrasive wear test was carried out for the FeAl coating at a temperature range from room temperature to 800 °C. The high-temperature abrasive wear of a heat-resistant stainless steel 2520 was performed for comparison. It was observed that the abrasive wear weight loss of FeAl coating was proportional to wear cycles in terms of sample revolutions at the tested temperatures. It was found that with the increase of the test temperature higher than 400 °C, the wear rate of cold-sprayed FeAl coating decreased with the increase of test temperature, while the wear rate of the heat-resistant steel increased significantly. The results indicate that the high-temperature abrasive wear resistance of the cold-sprayed FeAl intermetallic coating increased with the increase of the wear temperature in a temperature range from 400 to 800 °C. The wear resistance of cold-sprayed FeAl coating was higher than that of heat-resistant 2520 stainless steel under 800 °C by a factor of 3. 相似文献
14.
Xi Shi Mingyong Shu Qingdong Zhong Junliang Zhang Qiongyu Zhou Quoc Binh Bui 《Journal of Thermal Spray Technology》2016,25(3):595-604
FeCr alloy coating can be sprayed on low-carbon steel to improve the corrosion resistance because of FeCr alloy’s high anti-corrosion capacity. In this paper, Fe microparticles/Cr nanoparticles coating (NFC) and FeCr microparticles coating (MFC) were prepared by atmospheric plasma spraying and NFC was heat-treated under hydrogen atmosphere at 800 °C (HNFC). EDS mapping showed no penetration of Ni in MFC and NFC while penetration of Ni occurred in HNFC. X-ray diffraction results indicated the form of the NiCrFe (bcc) solid solution in HNFC. SECM testing in 3.5 (wt.%) NaCl revealed that the anti-corrosion capacity of NFC improved compared with MFC, while HNFC improved further. 相似文献
15.
对电弧喷涂涂层及其摩擦学性能进行了研究。指出:钢涂层颗粒间的结合力主要是机械嵌合、分子间力等,颗粒间为氧化物和显微孔隙所分隔;QAl9-2涂层颗粒间则有较大比例的焊接结合。另外,电弧喷涂涂层中显微孔隙的存在,是使其具有优良摩擦磨损性能的主要原因,尤其在较高的滑动速度下,它的优异性能更加明显。2Cr13钢涂层的磨损机制主要为涂层颗粒的剥离磨损。 相似文献
16.
A sputtered nanocrystalline coating of IN 738 alloy was obtained by means of magnetron sputtering. The isothermal oxidation behavior at 800, 900, and 1000°C and the cyclic oxidation behavior at 950°C of the coating were studied in comparison with IN 738 cast alloy. The results indicated that a double external oxide scale was formed on the nanocrystalline coating at 900, 950, and 1000°C without internal oxide and nitride. The scale consisted in an outer mixture of Cr2O3, TiO2, and NiCr2O4 and an inner, continuous Al2O3 layer, which offered good adhesive and protectiveness. However, at 800°C a continuous Al2O3 scale could not be formed during oxidation of nanocrystalline coating and aluminum was still oxidized internally. 相似文献
17.
Zhu Li’an Ye Yicong Bai Shuxin Zhang Hong Zhang Kaili Ai Yuanlin Li Shun Tang Yu 《Oxidation of Metals》2019,91(5-6):749-766
Oxidation of Metals - In order to improve the high-temperature service property of Ir, a well-bonded single-layer pure IrAl intermetallic coating was prepared on Ir by pack cementation followed by... 相似文献
18.
Kati Tschöpe Anne Støre Asbjørn Solheim Egil Skybakmoen Tor Grande Arne Petter Ratvik 《JOM Journal of the Minerals, Metals and Materials Society》2013,65(11):1403-1410
Cathode wear is the main factor limiting the lifetime of high-amperage aluminum electrolysis cells with graphitized cathodes. The current article deals with an investigation of cathode wear in a laboratory cell, where the cathode is directly exposed to the electrolyte during electrolysis. The wear was shown to be electrochemical in nature and dependent on the current density, the rotation speed, and the depth of prefabricated slots in the cylindrical cathodes. The wear mechanism is discussed with respect to kinetics influencing the electrochemistry as well as the solubility of aluminum carbide in the electrolyte. 相似文献
19.
冷喷涂铝涂层在海水中的腐蚀行为研究 总被引:2,自引:0,他引:2
利用电化学测试手段研究冷喷涂铝涂层在海水环境中的腐蚀行为,并研究了冷喷涂铝涂层在中性盐雾中腐蚀速度的变化规律.结果表明,海水环境中冷喷涂铝涂层表面覆盖致密稳定的腐蚀产物,有效阻止了腐蚀介质向涂层内部的渗透,腐蚀速度随腐蚀时间的增加迅速降低. 相似文献
20.
Yan Liu Zongqiu Hang Guiying Yang Hao Fu Naiyuan Xi Hui Chen 《Journal of Thermal Spray Technology》2018,27(7):1143-1152
In this work, WC-12Co coatings were prepared by high-velocity oxygen fuel spraying (HVOF) technology. The high-temperature sliding wear tests at 450, 550 and 650 °C were conducted on a pin-on-disk tribometer, and effects of CeO2 on the high-temperature wear behavior were investigated. The results showed that CeO2-modified WC-12Co coating possessed better sliding wear resistance than that of conventional WC-12Co coating at the tested temperatures. The maximum microhardness value of 1333 ± 25HV0.5 was available at the temperature of 550 °C for CeO2-modified WC-12Co coating worn track. The oxides formed on the worn surface played a significant role on the wear behavior. W2C, Co3O4 and ratio of CoWO4/WO3 dominated the wear behavior of the coating at 450, 550 and 650 °C, respectively. 相似文献