首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
沈彬彬 《物理测试》2019,37(5):9-11
利用 Gleeble-3800对钒微合金化钢的高温塑性进行了测定,并通过扫描电镜对不同温度下试验钢拉断后的断口形貌进行了观察分析。结果表明:随着温度降低,热塑性降低,断面收缩率降低,奥氏体化温度以上拉伸时,断口以深韧窝为主,部分韧窝底部分布着第二相粒子;但铁素体相变温度以下拉伸时,断口呈现沿晶断裂特征,断裂面上分布着浅而小的韧窝,降低了材料的热塑性;随着温度的升高,断面收缩率不断增加,试验钢在 850℃及其以上温度拉伸时的断面收缩率均大于 60%,在连铸坯生产时矫直温度不低于 850℃能够有效减少铸坯表面裂纹发生率,因此,在连铸坯生产时适宜的矫直温度应该不低于 850℃。  相似文献   

2.
采用Gleeble-3500热/力模拟试验机测定了新开发的纳米析出高强度钢在1 300~600℃的力学性能。结果表明:随拉伸温度降低,试验钢的抗拉强度逐渐升高,在1 000~750℃之间拉伸时,断面收缩率出现低谷,1 000℃时塑性仍很低,此温度区间即为该钢的第三脆性区,750℃时的断面收缩率最低,而在1 100~1 250℃之间钢的塑性良好。金相显微组织观察和扫描电镜观察发现,钢的第三脆性区拉伸试样断面呈现沿晶断口特征,以脆性断裂为主,表明纳米析出高强度钢的高温强度高,钢的塑性低谷的温度范围宽,易在连铸连轧生产过程中产生裂纹等缺陷,给实际生产工艺带来困难,需要注意制造工艺设计。  相似文献   

3.
在Gleeble-1500热模拟试验机上进行了Nb-Ti与Nb-V复合微合金化钢的高温拉伸试验,并用Thermo-Calc软件计算了两种试验钢不同析出相的析出温度,结合断口形貌对比分析了两种钢的高温塑性特点。结果表明:根据断面收缩率的变化规律,可以将Nb-Ti与Nb-V复合微合金化钢的整个塑性温度区间分为第Ⅰ脆性区、高塑性区和第Ⅲ脆性区,其中Nb-Ti钢的塑性区间温度范围分别为1320℃~熔点,880~1320℃和715~880℃;Nb-V钢塑性区间温度范围是1310℃~熔点,905~1310℃和705~905℃。Thermo-Calc软件计算结果表明钛元素对Al N的析出有较强的抑制作用,同时也抑制了微细Nb(C,N)的析出,能够改善含铌微合金钢的高温塑性;Nb-V钢第Ⅲ脆性区温度范围较Nb-Ti钢更宽,整体断面收缩率更差。  相似文献   

4.
对轴类锻件用中锰钢进行了高温热塑性研究。在不同温度下对试验钢进行了不同应变速率的高温拉伸试验,绘制了试验钢在不同条件下的高温热塑性曲线,并通过研究高温拉伸断口的形貌和组织分布,分析其断裂机理。结果表明,试验钢在650~1200 ℃范围内断面收缩率均达60%以上,热塑性良好,无脆性温度区。试验钢的高温拉伸断口附近组织为马氏体组织,在热塑性稍差的温度点(750,900 ℃)对应的组织中含有少量先共析铁素体。试验钢在650~1050 ℃范围内的断裂方式为穿晶韧性断裂,在1100~1200 ℃的断裂方式为沿晶断裂。  相似文献   

5.
采用ER70S-6焊丝对16Mn钢板进行CMT焊接,通过光学显微镜、扫描电镜对接头的组织和拉伸断口形貌进行了分析,并研究了焊接接头在400、500、530和560℃高温拉伸试验条件下的抗拉强度、伸长率以及断面收缩率的变化规律。结果表明:采用CMT焊接的16Mn钢焊缝组织主要由铁素体、珠光体和贝氏体组成,400℃时焊接接头的抗拉强度达787 MPa;随着拉伸试验温度的升高,试样的强度下降,伸长率、断面收缩率增大。  相似文献   

6.
利用Gleeble-3500热变形模拟试验机研究了中等铌含量(0.05%)低碳微合金钢的高温塑性。结果表明,试验钢在1350℃以上区域为第一高温塑性低谷;介于1250~950℃,出现一个高温塑性很好的区域,断面收缩率达到60%以上;而介于750~650℃则为第二高温塑性低谷。此外,铌可降低奥氏体向铁素体的转变温度,扩大奥氏体单相区,从而使试验钢第二高温塑性的低谷左移。  相似文献   

7.
利用Gleeble-1500热模拟试验机对GCr 15模具钢连铸坯进行高温拉伸试验,研究了不同温度条件下GCr15模具钢连铸坯的力学性能;分析了抗拉强度和断面收缩率随温度的变化情况;利用SEM观察试样的断口形貌.结果表明,GCr15模具钢良好的塑性区在800~1200℃,第一脆性区在1200~1350℃,第三脆性区在800℃以下,零塑性温度为1300℃,零强度温度在1400℃以上.防氧化剂能提高GCr 15的高温力学性能,经双细化处理并且涂有防氧化剂的GCr15钢,其伸长率达324.5%.  相似文献   

8.
利用MTS880试验机测试了40CrNi3MoV钢和50CrNi5MoV钢在高温下的拉伸性能。结果表明:试验钢的抗拉强度、屈服强度随试验温度的增加而降低,断面收缩率、伸长率随着试验温度的增加而增加。在350℃时,50CrNi5MoV钢与40CrNi3MoV钢的抗拉强度分别为1395、1180MPa;在500℃拉伸时,50CrNi5MoV钢与40CrNi3MoV钢的抗拉强度分别为1185、978MPa。与室温拉伸时的强度相比,350℃拉伸时50CrNi5MoV钢与40CrNi3MoV钢抗拉强度的下降率分别为14%和15%;500℃拉伸时50CrNi5MoV钢与40CrNi3MoV钢抗拉强度的下降率分别为27%和29%。50CrNi5MoV钢不但室温强度高,而且在500℃的高温下抗拉强度仍比40CrNi3MoV钢高200MPa左右,这说明50CrNi5MoV钢更适合在高温下使用。  相似文献   

9.
通过用Gleeble-3500热机械模拟试验机对化学成分(质量分数,%)为:C 0.07,Si 0.05,Mn 1.8,Al 0.03,Ti 0.02,Cu 0.3,Cr 0.5,Nb 0.015,Ni 0.17的A钢的高温力学性能展开研究,以0.001s-1应变速率,在温度范围650 ~1 350 ℃之间做一组高温拉伸试验,测得抗拉强度和断面收缩率.结果表明:A钢整体呈现较好的塑性,塑性低谷区温度范围较小.在775~1 250℃之间,断面收缩率均高于70%,塑性良好,第Ⅲ脆性区在650~775℃之间,A钢在700~750℃存在明显的塑性低谷.第Ⅲ脆性区断裂主要为沿晶脆性断裂,这主要是由于铁素体沿奥氏体晶界析出所致.实际连铸生产过程中可以避开此脆性区间,矫直温度尽量高于800℃.  相似文献   

10.
采用Gleeble 3500热模拟试验机对一种低合金系热轧低密度钢进行了高温(760~1200℃)热塑性研究,并结合光学显微镜、体视显微镜以及扫描电镜对拉断后的断口附近组织和断口形貌进行了表征。结果表明,随着拉伸温度升高,断口面积逐渐缩小,韧窝也逐渐变大变深,断面收缩率总体表现良好,均达到80%以上,表现出了良好的高温热塑性。但是试验钢在900~1000℃进行拉伸时,出现了多处颈缩现象,900~1000℃时存在理论塑性低谷区,应避免在900~1000℃进行铸坯矫直或轧制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号