首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Chen CY  Lin YK  Hsu CW  Wang CY  Chueh YL  Chen LJ  Lo SC  Chou LJ 《Nano letters》2012,12(5):2254-2259
One-dimensional metal silicide nanowires are excellent candidates for interconnect and contact materials in future integrated circuits devices. Novel core-shell Ni(2)Si/C54-TiSi(2) nanowires, 2 μm in length, were grown controllably via a solid-liquid-solid growth mechanism. Their interesting ferromagnetic behaviors and excellent electrical properties have been studied in detail. The coercivities (Hcs) of the core-shell Ni(2)Si/C54-TiSi(2) nanowires was determined to be 200 and 50 Oe at 4 and 300 K, respectively, and the resistivity was measured to be as low as 31 μΩ-cm. The shift of the hysteresis loop with the temperature in zero field cooled (ZFC) and field cooled (FC) studies was found. ZFC and FC curves converge near room temperature at 314 K. The favorable ferromagnetic and electrical properties indicate that the unique core-shell nanowires can be used in penetrative ferromagnetic devices at room temperature simultaneously as a future interconnection in integrated circuits.  相似文献   

2.
Ding T  Wu Y  Song J  Li J  Huang H  Zou J  Cai Q 《Nanotechnology》2011,22(24):245707
The morphology and crystalline structure of Er silicide nanocrystals self-assembled on the Si(001) substrate were investigated using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). It was found that the nanowires and nanorods formed at 630?°C has dominant hexagonal AlB(2)-type structure, while inside the nanoislands self-organized at 800?°C the tetragonal ThSi(2)-type structure is prevalent. The lattice analysis via cross-sectional high-resolution TEM demonstrated that internal misfit strain plays an important role in controlling the growth of nanocrystals. With the relaxation of strain, the nanoislands could evolve from a pyramid-like shape into a truncated-hut-like shape.  相似文献   

3.
We report the infrared emissions of Er(3+)-Tm3+ co-doped amorphous Al2O3 thin films pumped at 791 nm by a Ti:sapphire laser. The as-deposited films were annealed to improve the photoluminescence performance. Three cross relaxation channels among Er(3+)-Tm3+ and Tm(3+)-Tm3+ ions incorporated in the films were investigated as annealing temperature increases especially from 800 to 850 degrees C. In order to understand the Stark effect and cross relaxations, the photoluminescence spectra were deconvoluted by Gaussian fittings. Our results indicate that the luminescence intensity of 1.62 microm in comparison to 1.5 microm can be enhanced by the cross relaxation process [Er3+ (4I13/2) + Tm3+ (3H6) --> Er3+ (4I15/2) + Tm3+ (3F4)], and the longer-wavelength side of Er3+ emission can be improved by the CR process [Er3+ (4I15/2) + Tm3+ (3H4) --> Er3+ (4I3/2) + Tm3+ (3F4) at expense of the Tm3+ 1.47 microm emission which is also maybe quenched by the CR effect between themselves. These results suggest one possible approach to achieve broadband infrared emissions at the wavelength region of 1.45-1.65 microm from the Er(3+)-Tm3+ co-doped systems.  相似文献   

4.
A strong diameter dependence is observed in the interfacial abruptness and growth rates in Si/Si 1- x Ge x axial heterostructure nanowires grown via Au-mediated low pressure CVD using silane and germane precursors. The growth of these nanowires has similarities to that of heterostructure thin films with similar compositional interfacial broadening, which increases with and is on the order with diameter. This broadening may reveal a fundamental challenge to fabrication of abrupt heterostructures via VLS growth.  相似文献   

5.
Lin YC  Lu KC  Wu WW  Bai J  Chen LJ  Tu KN  Huang Y 《Nano letters》2008,8(3):913-918
We report the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heterostructure has an atomically sharp interface with epitaxial relationships of Si[110]//PtSi[010] and Si(111)//PtSi(101). Electrical measurements show that the pure PtSi nanowires have low resistivities approximately 28.6 microOmega.cm and high breakdown current densities>1x10(8) A/cm2. Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/microm, field-effect hole mobility of 168 cm2/V.s, and on/off ratio>10(7), demonstrating the best performing device from intrinsic silicon nanowires.  相似文献   

6.
Jung M  Song W  Sung Lee J  Kim N  Kim J  Park J  Lee H  Hirakawa K 《Nanotechnology》2008,19(49):495702
We report the electrical breakdown behavior and subsequent nanogap formation of In(2)O(3)/InO(x) core/shell heterostructure nanowires with substrate-supported and suspended structures. The radial heterostructure nanowires, composed of crystalline In(2)O(3) cores and amorphous In-rich shells, are grown by chemical vapor deposition. As the nanowires broke down, they exhibited two distinct current drops in the current-voltage characteristics. The tips of the broken nanowires were found to have a cone or a volcano shape depending on the width of the nanowire. The shape, the size, and the position of the nanogap depend strongly on the device structure and the nanowire dimensions. The substrate-supported and the suspended devices exhibit distinct breakdown behavior which can be explained by the diffusive thermal transport model. The breakdown temperature of the nanowire is estimated to be about 450?K, close to the melting temperature of indium. We demonstrated the usefulness of this technique by successful fabrication of working pentacene field-effect transistors.  相似文献   

7.
Zhao Y  Smith JT  Appenzeller J  Yang C 《Nano letters》2011,11(4):1406-1411
Appropriately controlling the properties of the Si shell in Ge/Si core/shell nanowires permits not only passivation of the Ge surface states, but also introduces new interface phenomena, thereby enabling novel nanoelectronics concepts. Here, we report a rational synthesis of Ge/Si core/shell nanowires with doped Si shells. We demonstrate that the morphology and thickness of Si shells can be controlled for different dopant types by tuning the growth parameters during synthesis. We also present distinctly different electrical characteristics that arise from nanowire field-effect transistors fabricated using the synthesized Ge/Si core/shell nanowires with different shell morphologies. Furthermore, a clear transition in the modification of device characteristics is observed for crystalline shell nanowires following removal of the shell using a unique trimming process of successive native oxide formation/etching. Our results demonstrate that the preferred transport path through the nanowire structure can be modulated by appropriately tuning the growth conditions.  相似文献   

8.
Chou YC  Wu WW  Cheng SL  Yoo BY  Myung N  Chen LJ  Tu KN 《Nano letters》2008,8(8):2194-2199
The formation of CoSi and CoSi2 in Si nanowires at 700 and 800 degrees C, respectively, by point contact reactions between nanodots of Co and nanowires of Si have been investigated in situ in a ultrahigh vacuum high-resolution transmission electron microscope. The CoSi2 has undergone an axial epitaxial growth in the Si nanowire and a stepwise growth mode was found. We observed that the stepwise growth occurs repeatedly in the form of an atomic step sweeping across the CoSi2/Si interface. It appears that the growth of a new step or a new silicide layer requires an independent event of nucleation. We are able to resolve the nucleation stage and the growth stage of each layer of the epitaxial growth in video images. In the nucleation stage, the incubation period is measured, which is much longer than the period needed to grow the layer across the silicide/Si interface. So the epitaxial growth consists of a repeating nucleation and a rapid stepwise growth across the epitaxial interface. This is a general behavior of epitaxial growth in nanowires. The axial heterostructure of CoSi2/Si/CoSi2 with sharp epitaxial interfaces has been obtained. A discussion of the kinetics of supply limited and source-limited reaction in nanowire case by point contact reaction is given. The heterostructures are promising as high performance transistors based on intrinsic Si nanowires.  相似文献   

9.
Y. Yao  S. Fan 《Materials Letters》2007,61(1):177-181
The metal copper which is a newly developed interconnecting material for integrated circuit (IC) has been used as the catalyst to catalyze the formation of the Si nanowires in high temperature tube furnace. The growth direction of the straight Si nanowires is <111> and the polyhedron η″-Cu3Si alloy is on the tip of the Si nanowires. The synthesis temperature of the Si nanowires is 500 °C. Such a low temperature implies that the vapor-solid (VS) should be the growth method. The cheap Cu catalyst is favorable for the mass synthesis of Si nanowires.  相似文献   

10.
We investigate the enhanced pumping energy transfer for near-infrared photoluminescence in high-density Si nanocrystals (nc-Si) and Erbium ions co-doped SiOx film, which is obtained by RF magnetron assistant sputtering the SiO target with partially encapsulated Si and Er2O3 chips. In contrast to conventional approaches, the use of SiO instead of SiO2 or Si substrate facilitates the formation of nc-Si in the sputtered SiOx, while the Er2O3 replaces the Er pellets to improves the Er3+ concentrations and prevent the precipitation of Er atoms in the nc-Si and Er3+ co-doped SiOx film. Er3+ ion concentration up to 0.325 atomic % is obtained in the SiOx:Er3+ film under a sputtering power of 100 Watts. Correlation between annealing parameters and energy transferring from nc-Si to Er3+ ions is demonstrated, which reveals an optimized annealing condition at 1000 degrees C for 240 min and highest energy transfer efficiency from 760 to 1535 nm by the nc-Si with size and density of 4.5 nm and 10(18) cm(-3) is observed.  相似文献   

11.
Chueh YL  Ko MT  Chou LJ  Chen LJ  Wu CS  Chen CD 《Nano letters》2006,6(8):1637-1644
TaSi2 nanowires have been synthesized on a Si substrate by annealing NiSi2 films at 950 degrees C in an ambient containing Ta vapor. The nanowires could be grown up to 13 microm in length. Field-emission measurements show that the turn-on field is low at 4-4.5 V/microm and the threshold field is down to 6 V/microm with the field enhancement factor as high as 1800. The metallic TaSi2 nanowires exhibit excellent electrical properties with a remarkable high failure current density of 3 x 10(8) A cm(-2). In addition, effects of annealing temperatures and capability of metal silicide mediation layer on the growth of nanowires are addressed. This simple approach promises future applications in nanoelectronics and nano-optoelectronics.  相似文献   

12.
An Er(3+)-doped SiO2:Ta2O5 optical channel waveguide and nanocomposite were prepared by the sol-gel route at a Si:Ta 50:50 molar ratio. Channels with an excellent surface profile were easily and quickly fabricated by focusing a femtosecond laser onto the surface of multilayered films deposited on SiO2/Si substrates. In parallel, the same sol used to prepare the film was annealed at 900, 1000, and 1100 degrees C for 2 h, to get the nanocomposite materials. A broadband NIR emission around 1538 nm, assigned to the 4I13/2 --> 4I15/2 transition of the Er3+ ions was observed in the nanocomposites of amorphous SiO2 containing dispersed Ta2O5 nanocrystals. The 4I13/2 lifetime and emission bandwidth depend on the annealing temperature. In conclusion, Er(3+)-doped SiO2:Ta2O5 channel waveguides and nanocomposites are promising materials for photonic applications.  相似文献   

13.
Liu G  Lin YC  Liao L  Liu L  Chen Y  Liu Y  Weiss NO  Zhou H  Huang Y  Duan X 《Nano letters》2012,12(4):1972-1976
We report the synthesis of single crystalline Co(2)Si nanowires and the electrical transport studies of single Co(2)Si nanowire devices at low temperature. The butterfly shaped magnetoresistance shows interesting ferromagnetic features, including negative magnetoresistance, hysteretic switch fields, and stepwise drops in magnetoresistance. The nonsmooth stepwise magnetoresistance response is attributed to magnetic domain wall pinning and depinning motion in the Co(2)Si nanowires probably at crystal or morphology defects. The temperature dependence of the domain wall depinning field is observed and described by a model based on thermally assisted domain wall depinning over a single energy barrier.  相似文献   

14.
The ZnO nanowires were synthesized by using vapor-liquid-solid mechanism and then the ZnO nanowires were sheathed with TiO2 by metal organic chemical vapor deposition. The coaxial nanowires were 30-200 nm in diameter and up to 0.2 microm in length. Transmission electron microscopy and X-ray diffraction analysis results showed that the ZnO cores and TiO2 shells of the core-shell nanowires had wurtzite and amorphous structures, respectively. Photoluminescence measurement showed that TiO2 coating increased and decreased the near-band edge (NBE) and deep-level emissions of the ZnO nanowires in intensity, respectively. However, it appeared that subsequent annealing was undesirable since it decreased the NBE emission in intensity.  相似文献   

15.
We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. However, coalescence of the nanowires results in micro-strain with a magnitude from ± (0.015)% to ± (0.03)%. This micro-strain contributes to the linewidth observed in low-temperature photoluminescence spectra.  相似文献   

16.
Ni nanowries were fabricated by atomic force microscope nanolithography, evaporation, lift-off and annealing processes. Epitaxial NiSi2 nanowires on a Si(100) surface along Si(110) and (100) directions were formed by the rapid thermal annealing treatment of the Ni nanowires at 400 degrees C. The silicide nanowires along the Si(110) direction had coherent type-A Si(111) and Si(100) interfaces, while those along the Si(100) direction had a type-A Si(110) interface. Silicide nanowires were agglomerated when the Ni nanowires were annealed at high temperature (> or = 500 degrees C). The mechanism of formation of a faceted nanowire was discussed based on the minimization of the total surface energy.  相似文献   

17.
Lu KC  Wu WW  Ouyang H  Lin YC  Huang Y  Wang CW  Wu ZW  Huang CW  Chen LJ  Tu KN 《Nano letters》2011,11(7):2753-2758
We report the critical effects of oxide on the growth of nanostructures through silicide formation. Under an in situ ultrahigh vacuum transmission electron microscope, it is observed from the conversion of Si nanowires into the metallic PtSi grains epitaxially through controlled reactions between lithographically defined Pt pads and Si nanowires. With oxide, instead of contact area, single crystal PtSi grains start forming either near the center between two adjacent pads or from the ends of Si nanowires, resulting in the heterostructure formation of Si/PtSi/Si. Without oxide, transformation from Si into PtSi begins at the contact area between them, resulting in the heterostructure formation of PtSi/Si/PtSi. The nanowire heterostructures have an atomically sharp interface with epitaxial relationships of Si(20-2)//PtSi(10-1) and Si[111]//PtSi[111]. Additionally, it has been observed that the existence of oxide significantly affects not only the growth position but also the growth behavior and the growth rate by two orders of magnitude. Molecular dynamics simulations have been performed to support our experimental results and the proposed growth mechanisms. In addition to fundamental science, the significance of the study matters for future processing techniques in nanotechnology and related applications as well.  相似文献   

18.
Zhang L  d'Avezac M  Luo JW  Zunger A 《Nano letters》2012,12(2):984-991
Finding a Si-based material with strong optical activity at the band-edge remains a challenge despite decades of research. The interest lies in combining optical and electronic functions on the same wafer, while retaining the extraordinary know-how developed for Si. However, Si is an indirect-gap material. The conservation of crystal momentum mandates that optical activity at the band-edge includes a phonon, on top of an electron-hole pair, and hence photon absorption and emission remain fairly unlikely events requiring optically rather thick samples. A promising avenue to convert Si-based materials to a strong light-absorber/emitter is to combine the effects on the band-structure of both nanostructuring and alloying. The number of possible configurations, however, shows a combinatorial explosion. Furthermore, whereas it is possible to readily identify the configurations that are formally direct in the momentum space (due to band-folding) yet do not have a dipole-allowed transition at threshold, the problem becomes not just calculation of band structure but also calculation of absorption strength. Using a combination of a genetic algorithm and a semiempirical pseudopotential Hamiltonian for describing the electronic structures, we have explored hundreds of thousands of possible coaxial core/multishell Si/Ge nanowires with the orientation of [001], [110], and [111], discovering some "magic sequences" of core followed by specific Si/Ge multishells, which can offer both a direct bandgap and a strong oscillator strength. The search has revealed a few simple design principles: (i) the Ge core is superior to the Si core in producing strong bandgap transition; (ii) [001] and [110] orientations have direct bandgap, whereas the [111] orientation does not; (iii) multishell nanowires can allow for greater optical activity by as much as an order of magnitude over plain nanowires; (iv) the main motif of the winning configurations giving direct allowed transitions involves rather thin Si shell embedded within wide Ge shells. We discuss the physical origin of the enhanced optical activity, as well as the effect of possible experimental structural imperfections on optical activity in our candidate core/multishell nanowires.  相似文献   

19.
Well-crystallized ZnO nanowires have been successfully synthesized on NiCl2-coated Si substrates via a carbon thermal reduction deposition process. The pre-deposited Ni nanoparticles by dipping the substrates into NiCl2 solution can promote the formation of ZnO nuclei. The as-synthesized nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectrum. The results demonstrate that the as-fabricated nanowires with about 60 nm in diameter and several tens of micrometers in length are preferentially arranged along [0001] direction with (0002) as the dominate surface. Room temperature PL spectrum illustrates that the ZnO nanowires exist a UV emission peak and a green emission peak, and the peak centers locate at 387 and 510 nm. Finally, the growth mechanism of the nanowires is briefly discussed.  相似文献   

20.
Absorption and emission cross sections of Er(3+) in Al(2)O(3) waveguides   总被引:2,自引:0,他引:2  
Al(2)O(3) slab waveguide films were doped with erbium using ion implantation to a peak concentration of 1.5 at. %. Prism coupling measurements show absorption caused by (4)I (15/2) ?(4)I (13/2) intra-4f transitions in Er(3+) with a maximum at 1.530 mum of 8 dB/cm. The Er(3+) absorption cross section is determined as a function of wavelength. We used the McCumber theory to derive the emission cross section spectrum from the absorption results, which we then compared with the Er(3+) photoluminescence spectrum. The peak absorption and emission cross sections are found to be 6 x 10(-21) cm(-2). The results are used to predict the optical gain performance of an Er-doped Al(2)O(3) optical amplifier that operates around 1.5 mum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号