首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
(CexYb1−x)2Si2O7 (x = 0.00, 0.01) single crystals were grown by the micro-pulling-down method to test the possibility of its application as infra-red scintillator for medical imaging. Powder X-ray diffraction analysis indicated that the crystals were single-phase materials. The radioluminescence spectra of the crystals demonstrated presence of two near infra-red emission peaks (at 1010 and 1030 nm). The emission peaks at 420 and 580 nm ascribed to defects were also observed in the crystals. The human body has maximum transmission in wavelength range from 650 to 1200 nm. Therefore, Yb2Si2O7 is expected to be used as efficient infra-red scintillator for medical applications.  相似文献   

3.
Abstracts are not published in this journal This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
Nduwimana A  Musin RN  Smith AM  Wang XQ 《Nano letters》2008,8(10):3341-3344
We have derived an analytical effective-mass model and employed first-principles density functional theory to study the spatial confinement of carriers in core-shell and multishell structured semiconductor nanowires. The band offset effect is analyzed based on the subband charge density distributions, which is strongly dependent upon the strain relaxation. First-principles calculation results for spatially confined Si/Ge and GaN/GaP nanowires indicate accumulation of a Ge-core hole gas and a GaN-core electron gas, respectively, in agreement with experimental observations.  相似文献   

5.
6.
Diffuse reflectance and spontaneous photoluminescence excitation spectra of the Y2O3:Er (10 at % Er) compound have been studied under varied optical pumping conditions. The results demonstrate that the anti-Stokes luminescence of erbium-doped yttrium oxide has high intensity when two different photon energies are used for infrared illumination. The resonance wavelengths of IR photons for two-photon excitation of visible emission in the Y2O3:Er phosphor have been determined, and the corresponding electron transitions in erbium-related emission centers have been identified for the Stokes and anti-Stokes luminescence.  相似文献   

7.
Novel chainlike In2Ge2O7/amorphous GeO2 core/shell nanocables were successfully synthesized by the simple thermal evaporation method without the presence of catalyst. The growth process of the nanocables is based on vapor-solid (VS) growth mechanism. Its morphology and microstructures were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence spectroscopy. Studies indicate that typical chainlike nanocables consist of single crystalline In2Ge2O7 nanowires (core) with diameter of about 30 nm and amorphous GeO2 chainlike nanostructures (shell). Four emission peaks, namely 401 nm, 448.5 nm, 466.5 nm, and 491 nm, were observed in the room-temperature photoluminescence measurements.  相似文献   

8.
Lin YC  Lu KC  Wu WW  Bai J  Chen LJ  Tu KN  Huang Y 《Nano letters》2008,8(3):913-918
We report the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heterostructure has an atomically sharp interface with epitaxial relationships of Si[110]//PtSi[010] and Si(111)//PtSi(101). Electrical measurements show that the pure PtSi nanowires have low resistivities approximately 28.6 microOmega.cm and high breakdown current densities>1x10(8) A/cm2. Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/microm, field-effect hole mobility of 168 cm2/V.s, and on/off ratio>10(7), demonstrating the best performing device from intrinsic silicon nanowires.  相似文献   

9.
采用液相还原法制备出金纳米颗粒,并通过调控其浓度,采用热氧化的方法制备出了氧化亚铜纳米立方体及金/氧化亚铜核壳异质结纳米立方体。利用透射电子显微学对两种材料的结构及物相组成等进行了详细的分析研究,并探讨了各自的形成机理。研究发现Cu2O纳米立方体主要有正方体和截角正八面体两种几何形状。Au/Cu2O核壳异质结纳米立方体有两种形成机制。Au纳米颗粒和正四辛基溴化铵的浓度对于两种纳米立方体结构的形成起着重要的作用。  相似文献   

10.
Bottom-up nanostructure assembly has been a central theme of materials synthesis over the past few decades. Semiconductor quantum dots and nanowires provide additional degrees of freedom for charge confinement, strain engineering, and surface sensitivity-properties that are useful to a wide range of solid state optical and electronic technologies. A central challenge is to understand and manipulate nanostructure assembly to reproducibly generate emergent structures with the desired properties. However, progress is hampered due to the interdependence of nucleation and growth phenomena. Here we show that by dynamically adjusting the growth kinetics, it is possible to separate the nucleation and growth processes in spontaneously formed GaN nanowires using a two-step molecular beam epitaxy technique. First, a growth phase diagram for these nanowires is systematically developed, which allows for control of nanowire density over three orders of magnitude. Next, we show that by first nucleating nanowires at a low temperature and then growing them at a higher temperature, height and density can be independently selected while maintaining the target density over long growth times. GaN nanowires prepared using this two-step procedure are overgrown with three-dimensionally layered and topologically complex heterostructures of (GaN/AlN). By adjusting the growth temperature in the second growth step either vertical or coaxial nanowire superlattices can be formed. These results indicate that a two-step method allows access to a variety of kinetics at which nanowire nucleation and adatom mobility are adjustable.  相似文献   

11.
12.
The bare and hydrogen-passivated ZnSe/Si bi-coaxial nanowire heterostructures along [110] direction have been investigated by using the first-principle calculations within density functional theory. The structural stability and electronic property of ZnSe/Si bi-coaxial nanowire heterostructures have been shown by changing the Si components. It is found that the ZnSe/Si nanowires have zero gaps at lower Si components, and then they have the increasing gap at higher Si components. It is seen clearly that there is the transition of band gap form zero to nonzero. With increasing Si components, the ZnSe/Si nanowires can be also achieved as n-type or p-type, in agreement qualitatively with the experimental observations. In addition, the structural stabilities and the cohesive energies of ZnSe/Si bi-coaxial nanowires are changed obviously with the different Si components.  相似文献   

13.
InAs/InP axial nanowire heterostructures were grown by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. The nanowire crystal structure and morphology were investigated by transmission electron microscopy for various growth conditions (temperature, growth rate, V/III flux ratio). Growth mechanisms were inferred from the InAs and InP segment lengths as a function of the nanowire diameter. Short InAs segment lengths were found to grow by depletion of In from the Au particle as well as by direct impingement, while longer segments of InAs and InP grew by diffusive transport of adatoms from the nanowire sidewalls. The present study offers a way to control the lengths of InAs quantum dots embedded in InP barriers.  相似文献   

14.
15.
Spherical nanocrystalline Y2O3:Er particles differing in composition and size, with a scatter in the range 10–15%, have been prepared through the low-temperature thermolysis of an amorphous precursor. We have studied the luminescence, diffuse reflectance, and photoluminescence excitation spectra of Y2O3:Er nanoparticles differing in shape. The intensity of the visible luminescence bands of erbium-doped yttria has been shown to depend on sphere diameter. The resonance wavelengths of coupled photons have been determined as functions of Y2O3:Er phosphor nanosphere size.  相似文献   

16.
We report on the achievement of, for the first time, InN/InGaN core/shell nanowire heterostructures, which are grown directly on Si(111) substrates by plasma-assisted molecular beam epitaxy. The crystalline quality of the heterostructures is confirmed by transmission electron microscopy, and the elemental mapping through energy dispersive x-ray spectrometry further reveals the presence of an InGaN shell covering the sidewall and top regions of the InN core. The optical characterizations reveal two emission peaks centered at ~1685?nm and 1845?nm at 5?K, which are related to the emission from the InGaN shell and InN core, respectively. The InN/InGaN core/shell nanoscale heterostructures exhibit a very high internal quantum efficiency of ~62% at room temperature, which is attributed to the strong carrier confinement provided by the InGaN shell as well as the nearly intrinsic InN core.  相似文献   

17.
The chemical interaction between indium and thin SnO and SnO2 films and between tin and thin In2O3 films during vacuum annealing was studied. The metallic films were deposited onto single-crystal silicon substrates by magnetron sputtering, the SnO and SnO2 films were produced by heat-treating the Sn film in flowing oxygen at 673 and 873 K, respectively, and the In2O3 film was produced by heat-treating the In film at 573 K. The results indicate that annealing of the In/SnO/Si and In/SnO2/Si heterostructures in vacuum (residual pressure of 0.33 × 10?2 Pa) at 773 K gives rise to the reduction of Sn and oxidation of In, whereas annealing of Sn/In2O3/Si causes partial tin substitution for indium in the cubic indium oxide lattice.  相似文献   

18.
Hwang YJ  Wu CH  Hahn C  Jeong HE  Yang P 《Nano letters》2012,12(3):1678-1682
Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays increased by 5 times compared to the photocurrent density with InGaN nanowire arrays grown on planar Si (1.23 V vs RHE). High-resolution transmission electron microscopy showed that InGaN nanowires are stable after 15 h of illumination. These measurements show that Si/InGaN hierarchical nanostructures are a viable high surface area electrode geometry for solar water splitting.  相似文献   

19.
20.
Semiconductor nanowires formed using the vapor-liquid-solid mechanism are routinely grown in many laboratories, but a comprehensive understanding of the key factors affecting wire growth is still lacking. In this paper we show that, under conditions of low disilane pressure and higher temperature, long, untapered Si wires cannot be grown, using Au catalyst, without the presence of oxygen. Exposure to oxygen, even at low levels, reduces the diffusion of Au away from the catalyst droplets. This allows the droplet volumes to remain constant for longer times and therefore permits the growth of untapered wires. This effect is observed for both gas-phase and surface-bound oxygen, so the source of oxygen is unimportant. The control of oxygen exposure during growth provides a new tool for the fabrication of long, uniform-diameter structures, as required for many applications of nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号