首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin-polarized transport in ferromagnetic tunnel junctions, characterized by tunnel magnetoresistance, has already been proven to have great potential for application in the field of spintronics and in magnetic random access memories. Until recently, in such a junction the insulating barrier played only a passive role, namely to facilitate electron tunnelling between the ferromagnetic electrodes. However, new possibilities emerged when ferroelectric materials were used for the insulating barrier, as these possess a permanent dielectric polarization switchable between two stable states. Adding to the two different magnetization alignments of the electrode, four non-volatile states are therefore possible in such multiferroic tunnel junctions. Here, we show that owing to the coupling between magnetization and ferroelectric polarization at the interface between the electrode and barrier of a multiferroic tunnel junction, the spin polarization of the tunnelling electrons can be reversibly and remanently inverted by switching the ferroelectric polarization of the barrier. Selecting the spin direction of the tunnelling electrons by short electric pulses in the nanosecond range rather than by an applied magnetic field enables new possibilities for spin control in spintronic devices.  相似文献   

2.
Making electronic devices using a single molecule has been the ultimate goal of molecular electronics. For binary data storage in particular, the challenge has been the ability to switch a single molecule in between bistable states in a simple and repeatable manner. The reversible switching of single molecules of chloroaluminum phthalocyanine (ClAlPc) dipolar molecules within a close-packed monolayer is demonstrated. By pulsing an scanning tunneling microscopy tip, read-write operations of single-molecular binary bits at ~40 Tb/cm(2) (~250 Tb/in(2)) are demonstrated.  相似文献   

3.
The electric switching in a bistable ferrite-piezoelectric microwave resonator comprising a mechanically coupled yttrium iron garnet (YIG) ferrite film on a lead zirconate titanate (PZT) piezoelectric plate has been studied. The YIG/PZT resonator exhibits switching between stable states with small and large reflectance for a time on the order of a microsecond.  相似文献   

4.
Electron transport through a nanostructure can be characterized in part using concepts from classical fluid dynamics. It is thus natural to ask how far the analogy can be taken and whether the electron liquid can exhibit nonlinear dynamical effects such as turbulence. Here we present an ab initio study of the electron dynamics in nanojunctions which reveals that the latter indeed exhibits behavior quite similar to that of a classical fluid. In particular, we find that a transition from laminar to turbulent flow occurs with increasing current, corresponding to increasing Reynolds numbers. These results reveal unexpected features of electron dynamics and shed new light on our understanding of transport properties of nanoscale systems.  相似文献   

5.
We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical analysis of the switching events, we show that a 300 meV mode mediates the transition between the two states. We propose that breaking and reformation of a S-H bond in the contact zone between molecule and electrode explains the observed bistability.  相似文献   

6.
Understanding and controlling the flow of heat is a major challenge in nanoelectronics. When a junction is driven out of equilibrium by light or the flow of electric charge, the vibrational and electronic degrees of freedom are, in general, no longer described by a single temperature. Moreover, characterizing the steady-state vibrational and electronic distributions in situ is extremely challenging. Here, we show that surface-enhanced Raman emission may be used to determine the effective temperatures for both the vibrational modes and the electrons in the current in a biased metallic nanoscale junction decorated with molecules. Molecular vibrations show mode-specific pumping by both optical excitation and d.c. current, with effective temperatures exceeding several hundred kelvin. Anti-Stokes electronic Raman emission indicates that the effective electronic temperature at bias voltages of a few hundred millivolts can reach values up to three times the values measured when there is no current. The precise effective temperatures are model-dependent, but the trends as a function of bias conditions are robust, and allow direct comparisons with theories of nanoscale heating.  相似文献   

7.
We have found current-voltage (I-V) and conductance (dI/dV) characteristics of arrays of nanoscale tunnel junctions between normal metal electrodes to exhibit suitable features for primary thermometry. The current through a uniform array depends on the ratio of the thermal energy kBT and the electrostatic charging energy E c of the islands between the junctions and is completely blocked by Coulomb repulsion at T = 0 and at small voltages eV/2 Ec. In the opposite limit, kBT Ec, the width of the conductance minimum scales linearly and universally with T and N, the number of tunnel junctions, and qualifies as a primary thermometer. The zero bias drop in the conductance is proportional to T–1 and can be used as a secondary thermometer. We will show with Monte Carlo simulations how background charge and nonuniformities of the array will affect the thermometer.  相似文献   

8.
The advent of spin transfer torque effect accommodates site-specific switching of magnetic nanostructures by current alone without magnetic field. However, the critical current density required for usual spin torque switching remains stubbornly high around 10(6)-10(7) A cm(-2). It would be fundamentally transformative if an electric field through a voltage could assist or accomplish the switching of ferromagnets. Here we report electric-field-assisted reversible switching in CoFeB/MgO/CoFeB magnetic tunnel junctions with interfacial perpendicular magnetic anisotropy, where the coercivity, the magnetic configuration and the tunnelling magnetoresistance can be manipulated by voltage pulses associated with much smaller current densities. These results represent a crucial step towards ultralow energy switching in magnetic tunnel junctions, and open a new avenue for exploring other voltage-controlled spintronic devices.  相似文献   

9.
A surprising feature of liquid crystals is that rapid changes in alignment in these anisotropic liquids can induce significant flow, termed backflow, which in turn influences the alignment. A recent paper has suggested that such backflow may be the mechanism behind the fast switching observed in certain bistable nematic cells on the application of electric fields. In these experiments a weakly chiral nematic with unequal monostable surface anchorings is switched rapidly between a uniform and a -twist configuration, and it is conjectured that the backflow induced initially at the more strongly anchored surface plays a crucial role in the switching process. In this paper continuum theory is employed for nematic liquid crystals to investigate this phenomenon, and confirms that backflow can play an important role in the switching.  相似文献   

10.
The concept of an analytic signal is used to show that the stochastic synchronization of bistable systems corresponds to locking of the instantaneous phase of the oscillations in complete agreement with the classical theory of phase synchronization. Pis’ma Zh. Tekh. Fiz. 24, 12–19 (August 12, 1998)  相似文献   

11.
Within a simple mean-field model (self-consistent Hartree approximation) we discuss the possibility of polaron formation on a molecular wire as a mechanism for negative differential resistance (NDR), switching, and/or hysteresis in the I-V characteristic of molecular junctions. This mechanism differs from earlier proposed mechanisms of charging and conformational change. The polaron model captures the essential physics and provides qualitative correspondence with experimental data. The importance of active redox centers in the molecule is indicated.  相似文献   

12.
13.
The electrical switching behaviour of CdTexS1–x-doped borosilicate glass was studied by determining the d.c. current-voltage characteristics using a current source. The I-V characteristic is non-linear for high current density, leading to deviation from Ohm's law. The experimental data have been analysed assuming that the increase in the glass conductivity is dominated by the Joule effect. The theoretical model used is in good agreement with the experimental results.  相似文献   

14.
CMOS compatible nanoscale nonvolatile resistance switching memory   总被引:2,自引:0,他引:2  
Jo SH  Lu W 《Nano letters》2008,8(2):392-397
We report studies on a nanoscale resistance switching memory structure based on planar silicon that is fully compatible with CMOS technology in terms of both materials and processing techniques employed. These two-terminal resistance switching devices show excellent scaling potential well beyond 10 Gb/cm2 and exhibit high yield (99%), fast programming speed (5 ns), high on/off ratio (10(3)), long endurance (10(6)), retention time (5 months), and multibit capability. These key performance metrics compare favorably with other emerging nonvolatile memory techniques. Furthermore, both diode-like (rectifying) and resistor-like (nonrectifying) behaviors can be obtained in the device switching characteristics in a controlled fashion. These results suggest that the CMOS compatible, nanoscale Si-based resistance switching devices may be well suited for ultrahigh-density memory applications.  相似文献   

15.
Minimum voltage for threshold switching in nanoscale phase-change memory   总被引:1,自引:0,他引:1  
Yu D  Brittman S  Lee JS  Falk AL  Park H 《Nano letters》2008,8(10):3429-3433
The size scaling of the threshold voltage required for the amorphous-to-crystalline transition in phase-change memory (PCM) is investigated using planar devices incorporating individual GeTe and Sb2Te3 nanowires. We show that the scaling law governing threshold switching changes from constant field to constant voltage scaling as the amorphous domain length falls below 10 nm. This crossover is a consequence of the energetic requirement for carrier multiplication through inelastic scattering processes and indicates that the size of PCM bits can be miniaturized to the true nanometer scale.  相似文献   

16.
Building an electronic device using individual molecules is one of the ultimate goals in nanotechnology. To achieve this it will be necessary to measure, control and understand electron transport through molecules attached to electrodes. Substantial progress has been made over the past decade and we present here an overview of some of the recent advances. Topics covered include molecular wires, two-terminal switches and diodes, three-terminal transistor-like devices and hybrid devices that use various different signals (light, magnetic fields, and chemical and mechanical signals) to control electron transport in molecules. We also discuss further issues, including molecule-electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools.  相似文献   

17.
Kumar AS  Ye T  Takami T  Yu BC  Flatt AK  Tour JM  Weiss PS 《Nano letters》2008,8(6):1644-1648
We drive reversible photoinduced switching of single azobenzene-functionalized molecules isolated in tailored alkanethiolate monolayer matrices on Au{111}. We designed molecular tethers to suppress excited-state quenching from the metal substrate and formed rigid assemblies of single tethered azobenezene molecules in the domains of monolayer to limit steric constraints and tip-induced and stochastic switching effects. Single molecules were reversibly photoisomerized between trans and cis conformations by cycling exposure to visible and UV light. Trans and cis conformations were imaged as high (2.1 +/- 0.3 A) and low (0.7 +/- 0.2 A) protrusions in STM images and were assigned to the on and off states of the molecule, respectively.  相似文献   

18.
In magnetic nanostructures, one usually uses a magnetic field to commute between two resistance (R) states. A less common but technologically more interesting alternative to achieve R-switching is to use an electrical current, preferably of low intensity. Such current-induced switching (CIS) was recently observed in thin magnetic tunnel junctions and attributed to electromigration of atoms into/out of the insulator. Here, we study the CIS, electrical resistance, and magnetoresistance (MR) of thin MnIr/CoFe/AlO/sub x//CoFe tunnel junctions. The CIS effect at room temperature amounts to 6.9% R-change between the high and low states and is attributed to nanostructural rearrangements of metallic ions in the electrode/barrier interfaces. After switching to the low R-state, some electromigrated ions return to their initial sites through two different energy channels. A low (high) energy barrier of /spl sim/0.13 eV (/spl sim/0.85 eV) was estimated. Ionic electromigration then occurs through two microscopic processes associated with different types of ions sites/defects. Measurements under an external magnetic field showed an additional intermediate R-state due to the simultaneous conjugation of the MR (magnetic) and CIS (structural) effects.  相似文献   

19.
20.
This investigation attempts quantitative characterization of ultra-shallow junctions (USJs) in Si, useful for future generations of nanoscale MOSFETs as predicted by the Semiconductor Industry Association Roadmap. The USJs were fabricated using rapid thermal diffusion (RTD) from a heavily doped n-type surface source onto a heavily doped p-type substrate. The dopant profiles were analyzed using secondary ion mass spectrometry (SIMS), and were further used to calculate the metallurgical junction depth (MJD). One-dimensional (1-D) characterization of the electrical junction depth (EJD) associated with the electrically activated fraction of the incorporated dopants was performed using off-axis electron holography in a transmission electron microscope. 1-D potential profiles were derived from the unwrapped phase of the reconstructed holograms. The EJD was derived from the measured potential distribution across the p-n junction, and quantitative comparison is made with MJD derived from the SIMS profiles. The comparison between calculated electric field and total-charge distributions from the measured potential profiles and the simulated distributions using the SIMS profiles provides a quantitative estimate of the electrical activation of dopants incorporated by the RTD process, within the accuracy limits of this technique, which is discussed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号