首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用连续感应淬回火技术对20MnSi、20MnSiV和45钢拉杆进行淬火和回火实验,研究了其组织和性能变化。结果表明,钒元素能够降低回火温度对钢拉杆抗拉强度与屈服强度的影响。淬回火处理的45钢拉杆的组织为回火索氏体+铁素体,具有更好的冲击韧度。  相似文献   

2.
通过同一种钢在不同淬火条件(20及37℃水淬)下的试验比较,研究了淬火温度对回火后钢性能的影响.对试验钢分别进行淬火温度为880、940℃的一系列淬火试验及回火试验.结果发现,不同淬火温度及在20℃水淬条件下,φ26mm的试验钢均可淬透;当水温为37℃时经400℃回火,可获得良好的综合力学性能.  相似文献   

3.
为了验证计算机模拟所制定的针对大型塑料模具718钢的热处理工艺的可行性,采用特殊的端淬装置和端淬试棒进行特定工艺的淬火冷却,模拟大型塑料模具718钢在淬火过程中的温度场及组织变化.本文是在端淬试验的基础上,对淬火后的端淬试棒硬度随回火工艺变化的规律进行了研究,得出了保证718钢淬火和高温回火后硬度达到不同硬度差范围的回火工艺.)  相似文献   

4.
采用预渗氮+淬回火(N+Q)及碳氮共渗+淬回火(C+Q)两种化学热处理对GCr15钢进行表面强化,并与淬回火的GCr15钢进行对比.采用X射线衍射仪、扫描电镜、光学显微镜、显微硬度计等研究了不同热处理后GCr15钢的物相、组织结构及硬度,利用UMT-2摩擦磨损实验机分析了不同热处理后GCr15钢的摩擦学特性.结果表明:...  相似文献   

5.
《铸造技术》2016,(7):1374-1376
对大跨度桥梁用热轧钢拉杆进行低温淬回火和高温淬回火处理,对比分析了3种钢拉杆的力学性能与显微组织。结果表明,相比热轧40 Cr棒材,经高温淬回火钢拉杆的强度和冲击功得到较大提高,而断后伸长率略有降低。  相似文献   

6.
采用真空感应炉冶炼了试验钢,并用二辊可逆式轧机进行了轧制,分别用空冷、水淬、油淬三种方式冷却,并对水淬后的试验钢进行了不同温度的回火处理,研究了冷却方式及回火对试验钢组织及性能的影响。结果表明,水淬试验钢的强度最高,而冲击功及塑性最差;油淬钢的强度低于水淬,但冲击功最高,空冷钢的强度最低,塑性最高。空冷钢的组织以粒状贝氏体为主,以及不规则铁素体;水淬钢的组织为细小的板条贝氏体+少量粒状贝氏体;油淬钢的组织为细小的板条状贝氏体。回火对试验钢强度的影响不大,对塑性、韧性的影响则比较明显。强度随回火温度提高先略微升高后降低,韧性则先降低后升高。600℃时获得最高强度及较优的塑性和韧性,550℃时发生脆化。  相似文献   

7.
《热处理》2020,(4)
对直径为25 mm的40CrNiMo钢试棒进行了调质处理:840℃油淬和550~630℃回火。检测了钢的硬度、力学性能和显微组织,以研究回火温度对钢的组织和性能的影响,从而确定40CrNiMo钢的最佳调质处理工艺。试验结果表明:钢的淬火态硬度较高,达54.5 HRC;随着回火温度的升高,钢的塑性、韧性提高,强度、硬度下降。40CrNiMo钢的最佳调质处理工艺为840℃油淬和560℃回火。  相似文献   

8.
真空气淬相较于传统热处理工艺具有控温精度高,表面氧化脱碳少等优势,但同时具有冷却速度慢的劣势。本文对KMN钢锻件进行真空加热970℃、淬火(5 bar氮气冷却或油淬)及580℃高温回火。热处理后,检验其力学性能和显微组织。结果表明:经气淬并高温回火的KMN钢力学性能略低于油淬并高温回火,显微组织均以回火索氏体为主。KMN钢经真空气淬或油淬并高温回火后,可以得到类似的力学性能与显微组织。  相似文献   

9.
《热处理》2017,(2)
对高铁用35CrMo钢、40CrNiMo钢和34CrNiMo6钢淬透性、淬硬性及热处理工艺进行了试验研究。试验结果表明,三种材料中34CrNiMo6钢的淬透性最好;40CrNiMo钢淬硬性较好,但淬硬层深度较浅;35CrMo钢的淬硬性低于40CrNiMo钢,淬透性低于34CrNiMo6钢。三种钢的抗拉强度、屈服强度和硬度均随回火温度的提高而下降,而断后伸长率、冲击韧度则随回火温度的升高而上升。  相似文献   

10.
张绪平  任强  蔡钢 《热处理》2011,(5):45-48
研究了第一次890~970℃油淬、第二次810~890℃水淬两次淬火及回火工艺对35CrMnSi钢抗拉强度的影响。结果表明,两次淬火工艺可细化钢的组织,提高钢的抗拉强度。对于尺寸为12 mm×40 mm×200 mm的35CrMnSi钢试样,优化的热处理工艺为930℃×19 min油淬,890℃×20 min水淬,然后170℃回火120 min,抗拉强度达1958 MPa。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号