首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report 50-nm T-gate metamorphic high-electron mobility transistors (MHEMTs) with low noise figure and high characteristics. The 30 mumtimes2 MHEMT shows a drain current density of 690 mA/mm, a gm,max of 1270 mS/mm, an fT of 489 GHz, and an of 422 GHz. In the frequency range of 59-61 GHz, the noise figure is less than 0.7 dB, and the associated gain was greater than 9 dB at a drain voltage of 1.3 V and a gate voltage of -0.8 V. To our knowledge, the MHEMT shows the best performance in terms of and noise figure among GaAs-based HEMTs.  相似文献   

2.
This letter reports, for the first time, a high-electron mobility transistor (HEMT) using a dilute antimony In0.2Ga0.8 AsSb channel, which is grown by a molecular-beam epitaxy system. The interfacial quality within the InGaAsSb/GaAs quantum well of the HEMT device was effectively improved by introducing the surfactantlike Sb atoms during the growth of the InGaAs layer. The improved heterostructural quality and electron transport properties have also been verified by various surface characterization techniques. In comparison, the proposed HEMT with (without) the incorporation of Sb atoms has demonstrated the maximum extrinsic transconductance gm,max of 227 (180) mS/mm, a drain saturation current density IDSS of 218 (170) mA/mm, a gate-voltage swing of 1.215 (1.15) V, a cutoff frequency fT of 25 (20.6) GHz, and the maximum oscillation frequency fmax of 28.3 (25.6) GHz at 300 K with gate dimensions of 1.2times200 mum2  相似文献   

3.
Depositing gate metal across a step undercut between the Schottky barrier layer and the insulator-like layer is employed to obtain a reduced gate length of 0.4 mum with an additional 0.6-mum field plate from a 1-mum gate window. Most dc and ac characteristics including current density (IDSS=451mA/mm), transconductance (gm,max=225mS/mm), breakdown voltages (VBD(DS)/V BD(GD)=22/-25.5V), gate-voltage swing (GVS=2.24V), cutoff, and maximum oscillation frequencies (ft/fmax=17.2/32GHz) are improved as compared to those of a 1-mum gate device without field plate. At a VDS of 4.0 V, a maximum power added efficiency of 36% with an output power of 13.9 dBm and a power gain of 8.7 dB are obtained at a frequency of 1.8 GHz. The saturated output power and the linear power gain are 316 mW/mm and 13 dB, respectively  相似文献   

4.
An enhancement-mode AlGaN/GaN HEMT with a threshold voltage of 0.35 V was fabricated by fluorine plasma treatment.The enhancement-mode device demonstrates high-performance DC characteristics with a saturation current density of 667 mA/mm at a gate bias of 4 V and a peak transconductance of 201 mS/mm at a gate bias of 0.8 V.The current-gain cut-off frequency and the maximum oscillation frequency of the enhancement-mode device with a gate length of μm are 10.3 GHz and 12.5 GHz,respectively,which is comparable with the depletion-mode device.A numerical simulation supported by SIMS results was employed to give a reasonable explanation that the fluorine ions act as an acceptor trap center in the barrier layer.  相似文献   

5.
We describe a self-aligned, refractory metal gate contact, enhancement mode, GaAs junction field effect transistor (JFET) where all impurity doping was done by ion implantation. Processing conditions are presented for realizing a high gate turn-on voltage (~1.0 V at 1 mA/mm of gate current) relative to GaAs MESFET's. The high gate turn-on voltage is the result of optimizing the p+-gate implant and anneal to achieve a nonalloyed ohmic contact between the implanted p+-GaAs and the sputter deposited tungsten gate contact. Initial nominally 1.0 μm×50 μm n-JFET's have a transconductance of 85 mS/mm and ft of 11.4 GHz  相似文献   

6.
High performance InP-based InAlAs/InGaAs enhancement-mode HEMT's are demonstrated using two improved approaches to device structure design and fabrication, i.e., nonalloyed ohmic contacts and Pt-based buried-gate technologies, to reduce the source resistance (RS). With specially designed cap layer structures, nonalloyed ohmic contacts to the device channel were obtained providing contact resistance as low as 0.067 Ω·mm. Furthermore, in device fabrication, a Pt-based buried-gate approach is used in which depletion-mode HEMTs are first intentionally fabricated, and then, the Pt-based gate metal is annealed at 250°C, causing the Pt-InAlAs reaction to take place under the gate electrode so that Pt sinks into InAlAs and depletes the channel. As a result, the depletion-mode HEMTs are changed to enhancement-mode, while the channel region between the source and gate electrodes remain undepleted, and therefore, the small R S of 0.2 Ω·mm can be maintained. Excellent maximum transconductance of 1170 mS/mm was obtained for a 0.5-μm-gate device. A maximum current-gain cutoff frequency fT of 41.2 GHz and maximum unilateral power-gain cutoff frequency fmax of 61 GHz were demonstrated for a 0.6-μm-gate enhancement-mode HEMT  相似文献   

7.
Using strained aluminum-rich In0.45Al0.55As as Schottky contact materials to enhance the barrier height and indium-rich In0.75Ga0.25As as channel material to enhance the channel performance, we have developed InP-based enhancement-mode pseudomorphic InAlAs/InGaAs high electron mobility transistors (E-PHEMT's) with threshold voltage of about 170 mv. A maximum extrinsic transconductance of 675 mS/mm and output conductance of 15 mS/mm are measured respectively at room temperature for 1 μm-gate-length devices, with an associated maximum drain current density of 420 mA/mm at gate voltage of 0.9 V. The devices also show excellent rf performance with cutoff frequency of 55 GHz and maximum oscillation frequency of 62 GHz. To the best of the authors' knowledge, this is the first time that InP-based E-PHEMT's with strained InAlAs barrier layer have been demonstrated  相似文献   

8.
We have demonstrated the first Ga2O3(Gd2O3) insulated gate n-channel enhancement-mode In0.53Ga0.47As MOSFET's on InP semi-insulating substrate. Ga2O3(Gd2 O3) was electron beam deposited from a high purity single crystal Ga5Gd3O12 source. The source and drain regions of the device were selectively implanted with Si to produce low resistance ohmic contacts. A 0.75-μm gate length device exhibits an extrinsic transconductance of 190 mS/mm, which is an order of magnitude improvement over previously reported enhancement-mode InGaAs MISFETs. The current gain cutoff frequency, ft, and the maximum frequency of oscillation, fmax, of 7 and 10 GHz were obtained, respectively, for a 0.75×100 μm2 gate dimension device at a gate voltage of 3 V and drain voltage of 2 V  相似文献   

9.
An 0.12 μm gate length direct ion-implanted GaAs MESFET exhibiting excellent DC and microwave characteristics has been developed. By using a shallow implant schedule to form a highly-doped channel and an AsH3 overpressure annealing system to optimize the shallow dopant profile, the GaAs MESFET performance was further improved. Peak transconductance of 500 mS/mm was obtained at Ids =380 mA/mm. A noise figure of 0.9 dB with associated gain of 8.9 dB were achieved at 18 GHz. The current gain cutoff frequency fmax of 160 GHz indicates the suitability of this 0.12 μm T-gate device for millimeter-wave IC applications  相似文献   

10.
We have developed a novel enhancement-mode double-doped AlGaAs/InGaAs/AlGaAs heterojunction FET (HJFET) with a 5 nm thick Al0.5Ga0.5As barrier layer inserted between an In 0.2Ga0.8As channel layer and an upper Al0.2 Ga0.8As electron supply layer. The Al0.5Ga 0.5As barrier layer reduces gate current under high forward gate bias voltage, resulting in a high forward gate turn-on voltage (V F) of 0.87 V, which is 170 mV higher than that of an HJFET without the barrier layer. Suppression of gate current assisted by a parallel conduction path in the upper electron supply layer was found to be also important for achieving the high VF. The developed device exhibited a high maximum drain current of 300 mA/mm with a threshold voltage of 0.17 V. A 950 MHz PDC power performance was evaluated under single 3.5 V operation. An HJFET with a 0.5 μm long gate exhibited 0.92 W output power and 63.6% power-added efficiency with 0.08 mA gate current (Ig) at -48 dBc adjacent channel leakage power at 50 kHz off-center frequency. This Ig is one-thirteenth to that of the HJFET without the barrier layer. These results indicate that the developed enhancement-mode HJFET is suitable for single low voltage operation power applications  相似文献   

11.
In0.5(Al0.3Ga0.7)0.5 P/In0.2Ga0.8As single- and double-heterojunction pseudomorphic high electron mobility transistors (SH-PHEMTs and DH-PHEMTs) on GaAs grown by gas-source molecular beam epitaxy (GSMBE) were demonstrated for the first time. SH-PHEMTs with a 1-μm gate-length showed a peak extrinsic transconductance gm of 293 mS/mm and a full channel current density Imax of 350 mA/mm. The corresponding values of gm and Imax were 320 mS/mm and 550 mA/mm, respectively, for the DH-PHEMTs. A short-circuit current gain (H21) cutoff frequency fT of 21 GHz and a maximum oscillation frequency fmax of 64 GHz were obtained from a 1 μm DH device. The improved device performance is attributed to the large ΔEc provided by the In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As heterojunctions. These results demonstrated that In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As PHEMT's are promising candidates for microwave power applications  相似文献   

12.
In this letter, 1-mum GaAs-based enhancement-mode n-channel devices with channel mobility of 5500 cm2/Vmiddots and g m exceeding 250 mS/mm have been fabricated. The measured device parameters including threshold voltage Vth, maximum extrinsic transconductance gm, saturation current Idss , on-resistance Ron, and gate current are 0.11 V, 254 mS/mm, 380 mA/mm, 4.5 Omegamiddotmm, and < 56 pA for a first wafer and 0.08 V, 229 mS/mm, 443 mA/mm, 4.5 Omegamiddotmm, and < 90 pA for a second wafer, respectively. With an intrinsic transconductance gmi of 434 mS/mm, GaAs enhancement-mode MOSFETs have reached expected intrinsic device performance  相似文献   

13.
Self-aligned AlGaN/GaN high electron mobility transistors grown on semiinsulating SiC substrates with a 0.25 mum gate-length were fabricated using a single-step ohmic process. Our recently developed Mo/Al/Mo/Au-based ohmic contact requiring annealing temperatures between 500degC and 600degC was utilized. Ohmic contact resistances between 0.35-0.6 Omega ldr mm were achieved. These 0.25 mum gate-length devices exhibited drain current density as high as 1.05 A/mm at a gate bias of 0 V and a drain bias of 10 V. A knee voltage of less than 2 V and a peak extrinsic transconductance (gm ) of 321 mS/mm were measured. For their microwave characteristics, a unity gain cutoff frequency (fT ) of 82 GHz and maximum frequency of oscillation (f max) of 103 GHz were measured.  相似文献   

14.
An experimental study in which the quantum well width (W) is varied from 45 to 200 Å is discussed. Optimum device performance was observed at a well width of 120 Å. The 0.2-μm×130-μm devices with 120-Å quantum-well width typically exhibit a maximum channel current density of 550 mA/mm, peak transconductance of 550 mS/mm, and peak current gain cutoff frequency ( fT) of 122 GHz. These results have been further improved in subsequent fabrications employing a trilevel-resist mushroom-gate process. The 0.2-μm×50-μm devices with mushroom gate exhibit a peak transconductance of 640 mS/mm, peak f T of 100 GHz, and best power gains cutoff frequency in excess of 200 GHz. These results are among the best ever reported for GaAs-based FETs and are attributed to the high two-dimensional electron gas (2DEG) sheet density, good low-field mobility, low ohmic contact, and the optimized mushroom gate process  相似文献   

15.
An enhancement-mode InGaP/AlGaAs/InGaAs pseudomorphic high-electron mobility transistor using platinum (Pt) as the Schottky contact metal was investigated for the first time. Following the Pt/Ti/Pt/Au gate metal deposition, the devices were thermally annealed at 325 degC for gate sinking. After the annealing, the device showed a positive threshold voltage (Vth) shift from 0.17 to 0.41 V and a very low drain leakage current from 1.56 to 0.16 muA/mm. These improvements are attributed to the Schottky barrier height increase and the decrease of the gate-to-channel distance as Pt sinks into the InGaP Schottky layer during gate-sinking process. The shift in the Vth was very uniform across a 4-in wafer and was reproducible from wafer to wafer. The device also showed excellent RF power performance after the gate-sinking process  相似文献   

16.
SiNx/InP/InGaAs doped channel passivated heterojunction insulated gate field effect transistors (HIGFETs) have been fabricated for the first time using an improved In-S interface control layer (ICL). The insulated gate HIGFETs exhibit very low gate leakage (10 nA@VGS =±5 V) and IDS (sat) of 250 mA/mm. The doped channel improves the DC characteristics and the HIGFETs show transconductance of 140-150 mS/mm (Lg=2 μm), ft of 5-6 GHz (Lg=3 μm), and power gain of 14.2 dB at 3 GHz. The ICL HIGFET technology is promising for high frequency applications  相似文献   

17.
We have developed a novel AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor using a stack gate HfO2/Al2O3 structure grown by atomic layer deposition. The stack gate consists of a thin HfO2 (30-A) gate dielectric and a thin Al2O3 (20- A) interfacial passivation layer (IPL). For the 50-A stack gate, no measurable C-V hysteresis and a smaller threshold voltage shift were observed, indicating that a high-quality interface can be achieved using a Al2O3 IPL on an AlGaN substrate. Good surface passivation effects of the Al2O3 IPL have also been confirmed by pulsed gate measurements. Devices with 1- mum gate lengths exhibit a cutoff frequency (fT) of 12 GHz and a maximum frequency of oscillation (f MAX) of 34 GHz, as well as a maximum drain current of 800 mA/mm and a peak transconductance of 150 mS/mm, whereas the gate leakage current is at least six orders of magnitude lower than that of the reference high-electron mobility transistors at a positive gate bias.  相似文献   

18.
Double quantum-well modulation-doped field-effect transistors (MODFETs) with planar-doped lattice-strained AlGaAs/InGaAs structure have been fabricated and characterized at DC and microwave frequencies. At 300 K the 0.3-μm gate devices show a full channel current of 1100 mA/mm with a constant extrinsic transconductance of 350 mS/mm over a broad gate voltage range of 1.6 V. Excellent microwave performance is also achieved with a maximum available gain cutoff frequency f mag of 110 GHz and a current gain cutoff frequency f r of 52 GHz. A maximum output power of 0.7 W/mm with 30% efficiency is obtained at 18 GHz  相似文献   

19.
The fabrication and characterization of high-speed enhancement-mode InAlAs/InGaAs/InP high electron mobility transistors (E-HEMTs) have been performed. The E-HEMT devices were made using a buried-Pt gate technology. Following a Pt/Ti/Pt/Au gate metal deposition, the devices were annealed in a nitrogen ambient, causing the bottom Pt layer to sink toward the channel. This penetration results in a positive shift in threshold voltage. The dc and RF performance of the devices has been investigated before and after the gate annealing process. In addition, the effect of the Pt penetration was investigated by fabricating two sets of devices, one with 25 nm of Pt as the bottom layer and the other with a 5.0 nm bottom Pt layer. E-HEMTs were fabricated with gate lengths ranging from 0.3 to 1.0 μm. A maximum extrinsic transconductance (gmext) of 701 mS/mm and a threshold voltage (VT) of 167 mV was measured for 0.3 μm gate length E-HEMTs. In addition, these same devices demonstrated excellent subthreshold characteristics as well as large off-state breakdown voltages of 12.5 V. A unity current-gain cutoff frequency (f t) of 116 GHz was measured as well as a maximum frequency of oscillation (fmax) of 229 GHz for 0.3 μm gate-length E-HEMTs  相似文献   

20.
High-performance E-mode AlGaN/GaN HEMTs   总被引:1,自引:0,他引:1  
Enhancement-mode AlGaN/GaN high electron-mobility transistors have been fabricated with a gate length of 160 nm. The use of gate recess combined with a fluorine-based surface treatment under the gate produced devices with a threshold voltage of +0.1 V. The combination of very high transconductance (> 400 mS/mm) and low gate leakage allows unprecedented output current levels in excess of 1.2 A/mm. The small signal performance of these enhancement-mode devices shows a record current cutoff frequency (f/sub T/) of 85 GHz and a power gain cutoff frequency (f/sub max/) of 150 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号