首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Milk urea N (MUN) is used by dairy nutritionists and producers to monitor dietary protein intake and is indicative of N utilization in lactating dairy cows. Two experiments were conducted to explore discrepancies in MUN results provided by 3 milk processing laboratories using different methods. An additional experiment was conducted to evaluate the effect of 2-bromo-2-nitropropane-1, 3-diol (bronopol) on MUN analysis. In experiment 1, 10 replicates of bulk tank milk samples, collected from the Pennsylvania State University's Dairy Center over 5 consecutive days, were sent to 3 milk processing laboratories in Pennsylvania. Average MUN differed between laboratory A (14.9 ± 0.40 mg/dL; analyzed on MilkoScan 4000; Foss, Hillerød, Denmark), laboratory B (6.5 ± 0.17 mg/dL; MilkoScan FT + 6000), and laboratory C (7.4 ± 0.36 mg/dL; MilkoScan 6000). In experiment 2, milk samples were spiked with urea at 0 (7.3 to 15.0 mg/dL, depending on the laboratory analyzing the samples), 17.2, 34.2, and 51.5 mg/dL of milk. Two 35-mL samples from each urea level were sent to the 3 laboratories used in experiment 1. Average analyzed MUN was greater than predicted (calculated for each laboratory based on the control; 0 mg of added urea): for laboratory A (23.2 vs. 21.0 mg/dL), laboratory B (18.0 vs. 13.3 mg/dL), and laboratory C (20.6 vs. 15.2 mg/dL). In experiment 3, replicated milk samples were preserved with 0 to 1.35 mg of bronopol/mL of milk and submitted to one milk processing laboratory that analyzed MUN using 2 different methods. Milk samples with increasing amounts of bronopol ranged in MUN concentration from 7.7 to 11.9 mg/dL and from 9.0 to 9.3 mg/dL when analyzed on MilkoScan 4000 or CL 10 (EuroChem, Moscow, Russia), respectively. In conclusion, measured MUN concentrations varied due to analytical procedure used by milk processing laboratories and were affected by the amount of bronopol used to preserve milk sample, when milk was analyzed using a mid-infrared analyzer. Thus, it is important to maintain consistency in milk sample preservation and analysis to ensure precision of MUN results.  相似文献   

2.
Demographic and management data about organic dairies have been reported previously, but the current study is the first needs assessment of research and educational priorities of organic dairy farmers in the northeastern United States based directly upon their input. Our objectives were to (1) develop an initial understanding of the emerging research and educational needs of organic dairy farmers in the northeastern United States via focus group interviews, and (2) prioritize the needs identified by the focus groups with a broader population of organic dairy farmers via survey methods. Focus group interviews determined the questions used for the survey questionnaire distributed to 1,200 members of the Northeast Organic Dairy Producers Alliance. The members were asked about demographic information, but more importantly, challenges concerning business management and marketing, organic certification, and animal nutrition, health, and reproduction. The results (183 respondents, 15% response rate) were parsed by region (New England farms compared with New York and Pennsylvania farms), herd size (i.e., 12 to 37, 38 to 59, and >60 cows), and years of organic certification (<4 yr vs. ≥4 yr); however, no differences between regions were observed for demographic data. The average farm consisted of 309 acres and 57 milking cows, on which most of the forage was homegrown but grains were purchased (73% of farms). Among the greatest challenges identified by the farmers were obtaining a steady, fair price for milk (85% respondents); determining dry matter intake for animals on pasture (76%); and controlling nuisance flies (89%). Needs for additional research included organic treatments for mastitis (92% respondents), growing forages for organic production (84%), and developing value-added products (84%). Farms with <4 yr of organic certification were concerned with level of knowledge and experience of local certifiers, whereas organic producers with ≥4 yr of organic certification were more interested in field testing of new organic products. Opportunities for educational programs included learning about direct marketing possibilities (76% respondents) and providing training to regional veterinarians interested in organic remedies (91%). In conclusion, the information obtained from the current needs assessment provides a foundation for future research proposals and educational outreach programs, germane to stakeholder needs, which could benefit the organic dairy industry within the region and beyond.  相似文献   

3.
The purpose of this study was to compile and evaluate relationships between feed nitrogen (N) intake, milk urea N (MUN), urinary urea N (UUN), and ammonia (NH3) emissions from dairy farms to aid policy development. Regression relationships between MUN, UUN, and NH3 emissions were compiled from studies conducted in Wisconsin, California, and the Netherlands. Relative reductions in NH3 emissions were calculated as percentage decreases in NH3 emissions associated with a baseline MUN level of 14 mg/dL (prevailing industry average). For 3 studies with cows in stanchion barns, relative NH3 emission reductions of 10.3 to 28.2% were obtained when MUN declined from 14 to 10 mg/dL. Similarly, analyses of 2 freestall studies provided relative NH3 emission reductions of 10.5 to 33.7% when MUN levels declined from 14 to 10 mg/dL. The relative reductions in NH3 emissions from both stanchion and freestall barns can be associated directly with reductions in UUN excretion, which can be determined using MUN. The results of this study may help create new awareness, and perhaps eventual industry-based incentives, for management practices that enhance feed N use efficiency and reduce MUN, UUN, and NH3 emissions from dairy farms.  相似文献   

4.
Evaluation of milk urea nitrogen as a diagnostic of protein feeding   总被引:6,自引:0,他引:6  
An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R(2) = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R(2) = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R(2) = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R(2) = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion.  相似文献   

5.
The hypothesis of this field study was that providing farmers with information regarding their herd's milk urea nitrogen (MUN) would result in more accurate feed management and a change in MUN toward target values. All dairy herd bulk tanks (n = 1156) in the Maryland and Virginia Milk Producers' Cooperative were tested for MUN each month for six months ending in May 1999. Farmers (n = 454) who returned a survey were provided with the results of their MUN analysis each month along with interpretive information. Survey results indicated that most (89.5%) dairy farmers did not routinely use MUN prior to participating in the project, but most (88%) extension agents and nutritionists in the region recommended it. The average MUN across all farms in the study increased in the spring, but the increase was 0.52 mg/dl lower for farmers receiving MUN results than for those who did not participate in the program. Farmers who indicated they increased dietary crude protein (CP) due to low MUN started with MUN values that were 3 mg/dl below target but ended with target values. Farmers who indicated that they decreased CP due to high MUN began the project with high MUN but decreased it by 1 mg/dl compared to non-participating farmers. At the end of the project, 30% of farmers responding to a follow-up survey indicated they would use MUN analysis in the future. Providing MUN results and interpretive information to farmers was documented to change feeding practices and subsequent MUN results.  相似文献   

6.
Dietary protein levels are a risk factor for poor reproductive performance. Conception is particularly impaired in cases of high blood or milk urea. The objective of this study was to investigate the association between conception and low milk urea or changes in milk urea around artificial insemination (AI). Data were obtained from the French Milk Control Program for a 4-yr period (2009–2012). Milk urea values between 250 and 450 mg/kg (4.3 and 7.7 mM) were considered intermediate (I), and values ≤150 mg/kg (2.6 mM) were considered low (L). Milk urea values before and after each AI were allocated into 4 classes representing the dynamics of milk urea (before-after; I-I, I-L, L-I, and L-L). Subclinical ketosis was defined using milk fat and protein contents before AI as proxies. A logistic regression with a Poisson correction and herd as a random variable was then performed on data from Holstein or all breeds of cows. The success of conception was decreased [relative risk (95% confidence interval) = 0.96 (0.94–0.99)] in low-urea cows compared with intermediate-urea cows after AI; no significant association was found for urea levels before AI. When combining data on urea before and after AI, I-L urea cows exhibited a 5 to 9% decrease in conception compared with I-I urea cows, and L-I urea cows showed no difference in conception success compared with I-I urea cows. A decreased conception success for L-L urea cows compared with I-I urea cows was observed for the analysis with cows of all breeds. This work revealed that a decrease in urea from intermediate (before AI) to low (after AI) is a risk factor for conception failure. Surveys of variation in milk urea in dairy cows close to breeding are highly recommended.  相似文献   

7.
Our objectives were to assess the relationships between milk urea N (MUN), serum urea N (SUN), urine N (UN), and urinary urea N (UUN) in late-lactation cows fed N-limiting diets and compare these relationships with those previously established. Data were from a pen-based study in which 128 Holstein cows had been assigned to 1 of 16 pens in a randomized complete block design to assess the effects of diets containing 16.2, 14.4, 13.1, and 11.8% crude protein (CP, dry matter basis) during a 12-wk period. At least half of the cows in each pen were randomly selected to collect pen-level samples of serum and urine in wk 3, 7, and 11, when wk in lactation averaged 35, 39, and 43, respectively. A mixed model was developed to study the relationship of MUN with SUN, UN, and UUN. Week of lactation did not affect the relation between MUN and SUN across dietary treatments. However, we found a week × MUN interaction, suggesting that between wk 35 and 43 of lactation, UN excretion decreased from 89 to 73 g/d (?17 g/d) when MUN was 6.0 mg/dL (11.8% dietary CP) but increased from 142 to 149 g/d (+7 g/d) when MUN was 13.3 mg/dL (16.2% dietary CP). These effects were essentially due to changes in UUN excretion, which declined from 54 to 37 g/d (?17 g/d) and increased from 112 to 117 g/d (+5 g/d) when MUN was 6.0 and 13.3 mg/dL, respectively. When MUN was 11.2 mg/dL (15% dietary CP), UN and UUN excretions remained constant over time. Based on root mean squared prediction error and the concordance correlation coefficient, these data did not conform to most previously published prediction equations because of both mean and slope biases. The discrepancy could have resulted from difference in study design (cow vs. pen as experimental unit), dietary treatments (energy vs. N-limiting diets), frequency of measurement and duration of adaptation period (single measurement after 1 to 3 wk of adaptation vs. repeated measurements over a 12-wk period), method for determining urine volume (total collection vs. spot sampling), and the assay used to measure MUN. However, our data captured changes in kidney physiology that warrant further studies of long-term renal adaptation to N-limiting diets.  相似文献   

8.
The objectives of this study were to assess the relationship between urinary urea N (UUN) excretion (g/d) and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) content. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 ± 26 d in milk (DIM); mean ± standard deviation], mid (175 ± 3 DIM), and late (221 ± 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. Graded amounts of urea were added to the basal total mixed ration to linearly increase dietary CP content while maintaining similar concentrations of all other nutrients among treatments. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of urine as well as milk and blood sample collection. Dry matter intake and yields of milk, fat, protein, and lactose declined progressively with lactation stage and were unaffected by dietary CP content. Milk and plasma urea-N as well as UUN concentration and excretion increased in response to dietary CP content. Milk and urine urea-N concentration rose at increasing and decreasing rates, respectively, as a function of plasma urea-N. The renal urea-N clearance rate differed among lactation stages and dietary CP contents. The relationship between UUN excretion and MUN differed among lactation stages and diverged from linearity for cows in early and late lactation. However, these differences were restricted to very high MUN concentrations. Milk urea N may be a useful tool to predict the UUN excretion and ultimately NH3 emission from dairy cattle manure.  相似文献   

9.
The main objectives of this study were to assess the relationship between ammonia emissions from dairy cattle manure and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) concentration. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 ± 26 d in milk (DIM)], mid (175 ± 3 DIM), and late (221 ± 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square design balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of feces and urine as well as milk sample collection. The feces and urine from each cow were mixed in the proportions in which they were excreted to make slurry that was used to measure ammonia emissions at 22.5°C over 24 h using flux chambers. Samples of manure slurry were taken before and after ammonia emission measurements. The amount of slurry increased by 22% as dietary CP concentration increased from 15 to 21%, largely because of a greater urine volume (25.3 to 37.1 kg/d). Initial urea N concentration increased linearly with dietary CP from 153.5 to 465.2 mg/dL in manure slurries from cows fed 15 to 21% CP diets. Despite the large initial differences, the final concentration of urea N in manure slurries was less than 10.86 mg/dL for all dietary treatments. The final total ammoniacal N concentration in manure slurries increased linearly from 228.2 to 508.7 mg/dL as dietary CP content increased from 15 to 21%. Ammonia emissions from manure slurries ranged between 57 and 149 g of N/d per cow and increased linearly with dietary CP content, but were unaffected by stage of lactation. Ammonia emission expressed as a proportion of N intake increased with percentage CP in the diet from about 12 to 20%, whereas ammonia emission as a proportion of urinary urea N excretion decreased from 67 to 47%. There was a strong relationship between ammonia emission and MUN [ammonia emission (g/d per cow) = 25.0 (±6.72) + 5.03 (±0.373) × MUN (mg/dL); R2 = 0.85], which was not different among lactation stages. Milk urea N concentration is one of several factors that allows prediction of ammonia emissions from dairy cattle manure.  相似文献   

10.
Milk urea nitrogen (MUN) is correlated with N balance, N intake, and dietary N content, and thus is a good indicator of proper feeding management with respect to protein. It is commonly used to monitor feeding programs to achieve environmental goals; however, genetic diversity also exists among cows. It was hypothesized that phenotypic diversity among cows could bias feed management decisions when monitoring tools do not consider genetic diversity associated with MUN. The objective of the work was to evaluate the effect of cow and herd variation on MUN. Data from 2 previously published research trials and a field trial were subjected to multivariate regression analyses using a mixed model. Analyses of the research trial data showed that MUN concentrations could be predicted equally well from diet composition, milk yield, and milk components regardless of whether dry matter intake was included in the regression model. This indicated that cow and herd variation could be accurately estimated from field trial data when feed intake was not known. Milk urea N was correlated with dietary protein and neutral detergent fiber content, milk yield, milk protein content, and days in milk for both data sets. Cow was a highly significant determinant of MUN regardless of the data set used, and herd trended to significance for the field trial data. When all other variables were held constant, a percentage unit change in dietary protein concentration resulted in a 1.1 mg/dL change in MUN. Least squares means estimates of MUN concentrations across herds ranged from a low of 13.6 mg/dL to a high of 17.3 mg/dL. If the observed MUN for the high herd were caused solely by high crude protein feeding, then the herd would have to reduce dietary protein to a concentration of 12.8% of dry matter to achieve a MUN concentration of 12 mg/dL, likely resulting in lost milk production. If the observed phenotypic variation is due to genetic differences among cows, genetic choices could result in herds that exceed target values for MUN when adhering to best management practices, which is consistent with the trend for differences in MUN among herds.  相似文献   

11.
Feed management is one of the principal levers by which the production and composition of milk by dairy cows can be modulated in the short term. The response of milk yield and milk composition to variations in either energy or protein supplies is well known. However, in practice, dietary supplies of energy and protein vary simultaneously, and their interaction is still not well understood. The objective of this trial was to determine whether energy and protein interacted in their effects on milk production and milk composition and whether the response to changes in the diets depended on the parity and potential production of cows. From the results, a model was built to predict the response of milk yield and milk composition to simultaneous variations in energy and protein supplies relative to requirements of cows. Nine treatments, defined by their energy and protein supplies, were applied to 48 cows divided into 4 homogeneous groups (primiparous or multiparous × high or low milk potential) over three 4-wk periods. The control treatment was calculated to cover the predicted requirements of the group of cows in the middle of the trial and was applied to each cow. The other 8 treatments corresponded to fixed supplies of energy and protein, higher or lower than those of the control treatment. The results highlighted a significant energy × protein interaction not only on milk yield but also on protein content and yield. The response of milk yield to energy supply was zero with a negative protein balance and increased with protein supply equal to or higher than requirements. The response of milk yield to changes in the diet was greater for cows with high production potential than for those with low production potential, and the response of milk protein content was higher for primiparous cows than for multiparous cows. The model for the response of milk yield, protein yield, and protein content obtained in this trial made it possible to predict more accurately the variations in production and composition of milk relative to the potential of the cow because of changes in diet composition. In addition, the interaction obtained was in line with a response corresponding to the more limiting of 2 factors: energy or protein.  相似文献   

12.
Sources of variation in milk urea nitrogen in Ohio dairy herds   总被引:6,自引:0,他引:6  
The purpose of this study was to estimate the amount of variation in milk urea nitrogen (MUN) concentrations attributable to test-day, individual cow, and herd effects and to describe factors associated with MUN measurements in Ohio dairy herds. The data came from 24 Holstein herds, half of which were classified as low producing (LP) [rolling herd average (RHA) milk production < 7,258 kg] and half as high producing (HP) herds (RHA production > 10,433 kg). MUN concentration was measured from cow's monthly test-day milk samples. The data were analyzed using multilevel modeling technique in MLwiN, separately for LP and HP herds. The unadjusted mean MUN was 13.9 mg/dl for the HP herds and 11.3 mg/dl for the LP herds. The variance structure was different between the two groups. Most of the variability was found at test-day level in the LP herds, but at herd level in HP herds. MUN was lowest during the first month of lactation, and also season was associated with MUN in both groups. Test-day milk yield, milk fat percentage, and SCC were associated with MUN in the HP herds. With significant explanatory variables in the model, proportionally more of the variation was explained at herd level and less at test day level in both groups. Lower variability in MUN between test days in the HP herds may indicate more consistent day-to-day feeding and management within a herd. The great variability between test days should be considered when interpreting MUN and samples should be collected at the same time of the day to minimize day-to-day variability.  相似文献   

13.
Dietary proteins play an important role in reproduction, and increased dietary crude proteins, increased degradability of dietary proteins, and elevated blood or milk urea have been associated with decreased conception and pregnancy in many studies. The aim of this work was to provide a meta-analysis on the relationship between high milk or blood urea and pregnancy or conception, with a focus on defining the appropriate urea threshold associated with this issue. The meta-analysis included 61 different models from 21 papers. The thresholds of urea tested in the various models were built by steps of 1 mM urea. This constructed variable reduced heterogeneity by 61% in the meta-regression. The meta-analysis showed 43% lower odds of pregnancy or conception (odds ratio = 0.57; 95% confidence interval = 0.45–0.73) in cases where urea was ≥7.0 mM in the blood (plasma urea nitrogen = 19.3 mg/dL) or where urea was ≥420 mg/L in the milk compared with where urea values were lower. This threshold is the most suitable with regard to pregnancy or conception success, even if a threshold of 6.5 mM cannot be excluded with certainty. The results also highlighted the possibility of a stronger association between high urea concentrations and pregnancy or conception when high nitrogen exposure occurs before artificial insemination compared with after artificial insemination, but this possibility needs to be further studied. Whether the present results also apply to extensively pasture-based countries remains to be determined.  相似文献   

14.
15.
An experiment was conducted to test the hypothesis that a sufficient proportion of histidine (His) included in the drinking water of lactating cows bypasses the rumen to have an effect on milk synthesis. Eight dairy cows (45 ± 15 d in milk) were given either 0 or 2.5 g/L of His in the drinking water in a crossover design of two 7-d periods. Cows were offered a corn and alfalfa silage-based total mixed ration for ad libitum intake. Water was provided ad libitum to each cow in an individual automatic drinking vessel with a flow meter attached. Water intake tended to increase from 85.1 to 92.1 L/d when His was added. Concentrations of His in plasma samples collected on the last day of each period tended to increase from 14.6 to 21.6 μM, corresponding to an estimated 0.4% bypass of the imbibed histidine. Other amino acid concentrations in plasma were not affected by His supplementation. Milk yield increased by 1.7 L/d with His treatment, lactose yield increased by 90 g/d, and there were tendencies for protein yield to increase, fat percentage to decrease, and protein to fat ratio to increase. An improvement in postruminal histidine flow can influence milk production and composition but the proportion of imbibed water that bypasses the rumen will have to be increased to take advantage of drinking water as a vehicle to transfer His postruminally.  相似文献   

16.
The objective of this study was to determine the effects of supplementation of protein deficient diet with increasing amounts of urea-N on feed intake, milk yield, rumen fermentation, and nutrient digestibility in dairy cows. The hypothesis was that low rumen ammonia-N concentrations provide suboptimal conditions for rumen microbes and these conditions can be alleviated by urea-N that increases rumen ammonia-N concentrations. To evaluate this hypothesis, the diet was formulated slightly deficient with respect to rumen-degradable protein. To supplement the diet with rumen degradable N, 5 levels of urea-N (0, 17, 33, 49, and 66 g/d) were continuously infused into the rumen of 5 dairy cows according to a 5 × 5 Latin square. Increasing levels of urea-N infusion increased N intake and N excretion in urine and feces in a linear manner and tended to increase milk and milk protein yields. Feed intake and fiber digestibility were not affected by urea-N infusion levels. Rumen ammonia-N concentrations remained low (3.5 mg/100 mL) and did not respond to urea-N infusions levels between 0 to 49 g/d, whereas the highest level of urea-N (66 g/d) increased rumen ammonia-N concentration to 5.1 mg/100 mL (quadratic effect). These observations suggested that rumen microbes efficiently captured ammonia-N from rumen fluid until sufficient intracellular ammonia-N concentrations were attained, after which ammonia-N concentrations started to increase in extracellular rumen fluid. In contrast, milk urea-N concentrations increased in a curvilinear manner (cubic effect) from 4.4 to around 6 mg/100 mL for the medium levels of urea-N and then to 7.9 mg/100 mL for the highest level of urea-N infusion. The current results indicated that 18% of supplementary N intake was secreted in milk and 53% in urine. In spite of low rumen ammonia-N concentrations observed for the basal diet, it was estimated that only 43% of supplementary N was captured by rumen microbes. Estimated true digestibility for supplementary N (93%) provided further evidence that urea-N stimulated microbial N synthesis. The current results indicate that rumen ammonia-N concentration was an insensitive indicator of N deficiency at low levels of diet CP, whereas milk urea-N was responsive to diet CP concentrations at all urea-N infusion levels.  相似文献   

17.
Seventy multiparous Holstein-Friesian cows were fed different amounts of pasture and concentrates, or a total mixed ration (TMR), for 42 d in mid-lactation to test the hypothesis that the concentration of Se in milk would depend on the amount of Se consumed, when the Se is primarily organic in nature, regardless of the diet of the cows. Of the 70 cows, 60 grazed irrigated perennial pasture at daily allowances of either 20 or 40 kg of dry matter (DM)/cow. These cows received 1 of 3 amounts of concentrates, either 1, 3, or 6 kg of DM/cow per day of pellets, and at each level of concentrate feeding, the pellets were formulated to provide 1 of 2 quantities of Se from Se yeast, either about 16 or 32 mg of Se/d. The other 10 cows were included in 2 additional treatments where a TMR diet was supplemented with 1 kg of DM/d of pellets formulated to include 1 of the 2 quantities of supplemental Se. Total Se intakes ranged from 14.5 to 35.9 mg/d, and of this, the Se-enriched pellets provided 93, 91, and 72% of the Se for cows allocated 20 and 40 kg of pasture DM/d or the TMR, respectively. No effects of the amount of Se consumed on any milk production variable, or on somatic cell count, body weight, and body condition score, for either the pasture-fed or TMR-fed cows were found. Milk Se concentrations responded quickly to the commencement of Se supplementation, reaching 89% of steady state levels at d 5. When milk Se concentrations were at steady state (d 12 to 40), each 1 mg of Se eaten increased the Se concentration of milk by 5.0 μg/kg (R2 = 0.97), and this response did not seem to be affected by the diet of the cows or their milk production. The concentration of Se in whole blood was more variable than that in milk, and took much longer to respond to change in Se status, but it was not affected by diet at any time either. For the on-farm production of Se-enriched milk, it is important to be able to predict milk Se concentration from Se input. In our study, type of diet did not affect this relationship.  相似文献   

18.
The objective of this study was to investigate the global methylation rate in blood DNA and its relationship with lactation performance. A total of 196 mid-lactation dairy cows were fed the same diet under the same management. Milk yield was recorded and blood samples were collected from the jugular vein before morning feeding. The blood global DNA methylation rates were quantified using a methylation quantification kit. Overall, the average blood global DNA methylation rate of all cows was 12.4%. When DNA methylation rates were compared between cows with high (n = 40; 37.0 to 42.0 kg/d) and low (n = 33; 24.0 to 30.0 kg/d) milk yield, DNA methylation rates in the lower-yield cows (14.1 ± 0.7%) were significantly higher than those in the higher-yield animals (11.6 ± 0.7%). Our results indicated an association of milk and protein yields with global DNA methylation rates in lactating dairy cows. However, further research is needed to determine whether this association reflects the true influence of epigenetic mechanisms on yield or whether other factors, such as different proportions of blood cell types in high- and low-yielding cows, affect apparent global DNA methylation levels.  相似文献   

19.
Changing the composition of milk proteins and AA affects the nutritional and physical properties of dairy products. Intravenous infusions of glucagon decreases milk protein production and concentration by promoting the use of gluconeogenic blood AA for hepatic glucose synthesis. Little is known about how the diversion of AA to gluconeogenesis affects the composition of milk proteins and AA. The objective was to quantify changes in composition of milk protein and AA in response to i.v. glucagon infusions. Three separate experiments were used: 1) 8 Holstein cows were fed ad libitum and infused with glucagon at 10 mg/d for 14 d, 2) 7 Holstein cows were feed restricted and infused with glucagon at 10 mg/d for 14 d, and 3) 4 Brown Swiss cows were infused with glucagon at 5 and 10 mg/d for 2 d each. Milk and milk component yields and milk protein and amino acid composition of samples, collected with blood samples at the first and last day of the glucagon infusion period, were compared with those collected 1 d before and after the glucagon infusion period. Glucagon infusions decreased milk protein production and concentration in each experiment by at least 0.2 ± 0.05 kg/d and 4 ± 0.4 g/L, respectively. The decrease was accompanied by changes in milk protein composition, the most consistent being an increase in κ-casein (1.68 ± 0.27%). Overall, glucagon infusions resulted in higher proportions of κ-casein and αS2-casein (1.34 ± 0.51%) and smaller proportions of αS1-casein (−3.83 ± 1.75%) and α-lactalbumin (−0.91 ± 0.32%). Glucagon had little impact on milk AA composition except an increase in glycine (0.26 ± 0.11%). The results suggest that milk protein synthesis is regulated by many factors including AA and glucose availability.  相似文献   

20.
The objective of this study was to determine the long-term effects of feeding monensin on milk fatty acid (FA) profile in lactating dairy cows. Twenty-four lactating Holstein dairy cows (1.46 ± 0.17 parity; 620 ± 5.9 kg of live weight; 92.5 ± 2.62 d in milk) housed in a tie-stall facility were used in the study. The study was conducted as paired comparisons in a completely randomized block design with repeated measurements in a color-coded, double blind experiment. The cows were paired by parity and days in milk and allocated to 1 of 2 treatments: 1) the regular milking cow total mixed ration (TMR) with a forage-to-concentrate ratio of 60:40 (control TMR; placebo premix) vs. a medicated TMR [monensin TMR; regular TMR + 24 mg of Rumensin Premix per kg of dry matter (DM)] fed ad libitum. The animals were fed and milked twice daily (feeding at 0830 and 1300 h; milking at 0500 and 1500 h). Milk samples were collected before the introduction of treatments and monthly thereafter for 6 mo and analyzed for FA composition. Monensin reduced the percentage of the short-and medium-chain saturated FA 7:0, 9:0, 15:0, and 16:0 in milk fat by 26, 35, 19, and 6%, respectively, compared with the control group. Monensin increased the percentage of the long-chain saturated FA in milk fat by 9%, total monounsaturated FA by 5%, total n-6 polyunsaturated FA (PUFA) by 19%, total n-3 PUFA by 16%, total cis-18:1 by 7%, and total conjugated linoleic acid (CLA) by 43% compared with the control group. Monensin increased the percentage of docosahexaenoic acid (22:6n-3), docosapentaenoic acid (22:5n-3), and cis-9, trans-11 CLA in milk fat by 19, 13, and 43%, respectively, compared with the control. These results suggest that monensin was at least partly effective in inhibiting the biohydrogenation of unsaturated FA in the rumen and consequently increased the percentage of n-6 and n-3 PUFA and CLA in milk, thus enhancing the nutritional properties of milk with regard to human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号